Junmei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11943377/publications.pdf

Version: 2024-02-01

304743 265206 1,811 42 43 22 citations h-index g-index papers 43 43 43 1571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. Chemical Engineering Journal, 2022, 428, 131083.	12.7	33
2	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	17.4	91
3	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6841-6851.	8.0	12
4	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	11.0	16
5	Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-ion batteries. Materials Today Energy, 2022, 27, 101027.	4.7	1
6	Reversible Activation of V $\langle sup \rangle 4+\langle sup \rangle /V\langle sup \rangle 5+\langle sup \rangle$ Redox Couples in NASICON Phosphate Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	65
7	Preferential Extraction of Lithium from Spent Cathodes and the Regeneration of Layered Oxides for Li/Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24255-24264.	8.0	7
8	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100729.	19.5	108
9	Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nature Communications, 2021, 12, 2848.	12.8	108
10	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ 21/3Al <i>_xx21/31/31/31/31/31/321/321/321/321/31</i>	ub> 8.0	31
11	Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium. ACS Sustainable Chemistry and Engineering, 2021, 9, 10196-10204.	6.7	23
12	One-Step Synthesis of Carbon-Coated Na3(VOPO4)2F Using Biomass as a Reducing Agent and Their Electrochemical Properties. Waste and Biomass Valorization, 2020, 11, 2201-2209.	3.4	7
13	Revisiting of Tetragonal NaVPO ₄ F: A High Energy Density Cathode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30510-30519.	8.0	22
14	Comprehensive Studies on the Hydrothermal Strategy for the Synthesis of Na ₃ (VO _{1â^'} <i>_x</i> PO ₄) ₂ F ₁₊₂ < (0 ≤i>xà ≶) and their Naâ€Storage Performance. Small Methods, 2019, 3, 1800111.	:>< 811 9>x<	/subbo
15	Extraction of rare earths by undiluted [P666,14][NO3] and DEHEHP, and the recovery of rare earths from lamp phosphors. Journal of Material Cycles and Waste Management, 2019, 21, 1518-1525.	3.0	5
16	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	5.1	31
17	Preparation of Double Carboxylic Corn Stalk Gels and Their Adsorption Properties Towards Rare Earths (III). Waste and Biomass Valorization, 2018, 9, 1945-1954.	3.4	9
18	Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes. Joule, 2018, 2, 2348-2363.	24.0	128

#	Article	IF	CITATIONS
19	lonic liquid-based synergistic extraction of rare earths nitrates without diluent: Typical ion-association mechanism. Separation and Purification Technology, 2017, 179, 349-356.	7.9	37
20	pH-regulative synthesis of Na ₃ (VPO ₄) ₂ F ₃ nanoflowers and their improved Na cycling stability. Journal of Materials Chemistry A, 2016, 4, 7178-7184.	10.3	84
21	Superior Naâ€Storage Performance of Lowâ€Temperatureâ€Synthesized Na ₃ (VO _{1â^'<i>x</i>} PO ₄) ₂ F _{1+2<i>x</i>} (0≤i>xâ‰∰) Nanoparticles for Naâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 9911-9916.	13.8	191
22	A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na ₃ (VO _{1\hat{a}^*x} PO ₄) ₂ F _{1+2x} cathodes for sodium-ion batteries. Chemical Communications, 2015, 51, 7160-7163.	4.1	66
23	An ionic liquid-based synergistic extraction strategy for rare earths. Green Chemistry, 2015, 17, 2981-2993.	9.0	77
24	Adsorptive recovery of vanadium(V) from chromium(VI)-containing effluent by Zr(IV)-loaded orange juice residue. Chemical Engineering Journal, 2014, 248, 79-88.	12.7	63
25	Distribution Behaviors of Light Rare Earths by Di-(2-ethylhexyl) 2-Ethylhexyl Phosphonate in Kerosene under the Action of a Self-Salting-Out Effect. Industrial & Engineering Chemistry Research, 2014, 53, 1598-1605.	3.7	11
26	A phase transfer assisted solvo-thermal strategy for the synthesis of REF3 and Ln3+-doped REF3 nano-/microcrystals. Journal of Colloid and Interface Science, 2014, 436, 171-178.	9.4	6
27	Adsorption of rare earths (III) by calcium alginate-poly glutamic acid hybrid gels. Journal of Chemical Technology and Biotechnology, 2014, 89, 969-977.	3.2	62
28	Oâ€carboxymethyl chitosan entrapped by silica: preparation and adsorption behaviour toward neodymium (III) ions. Journal of Chemical Technology and Biotechnology, 2013, 88, 317-325.	3.2	52
29	Adsorption Properties toward Trivalent Rare Earths by Alginate Beads Doping with Silica. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 3453-3461.	3.7	51
30	Preparation of Several Alginate Matrix Gel Beads and their Adsorption Properties Towards Rare Earths (III). Waste and Biomass Valorization, 2013, 4, 665-674.	3.4	15
31	Size-controlled synthesis and morphology evolution of bismuth trifluoridenanocrystalsvia a novel solvent extraction route. Nanoscale, 2013, 5, 518-522.	5.6	20
32	A General Phase-Transfer Protocol for Mineral Acids and Its Application in the Large-Scale Synthesis of Highly Nanoporous Iron Phosphate in Nonaqueous Solvent. Industrial & Engineering Chemistry Research, 2012, 51, 12025-12030.	3.7	2
33	Monodisperse Iron Phosphate Nanospheres: Preparation and Application in Energy Storage. ChemSusChem, 2012, 5, 1495-1500.	6.8	30
34	Block copolymer micellization induced microphase mass transfer: Partition of Pd(II), Pt(IV) and Rh(III) in three-liquid-phase systems of S201–EOPO–Na2SO4–H2O. Journal of Colloid and Interface Science, 2011, 362, 228-234.	9.4	17
35	Investigation of three-liquid-phase extraction systems for the separation of Ti(IV), Fe(III) and Mg(II). Separation and Purification Technology, 2010, 76, 191-197.	7.9	20
36	Extraction of Rare Earths(III) from Nitrate Medium with Diâ€(2â€ethylhexyl) 2â€ethylhexyl Phosphonate and Synergistic Extraction Combined with 1â€Phenylâ€3â€Methylâ€4â€Benzoy lâ€Pyrazoloneâ€5. Separation Scienc Technology, 2006, 41, 3047-3063.	:e 215 d	18

#	Article	IF	CITATIONS
37	Interfacial behavior of DEHEHP and the kinetics of cerium(IV) extraction in nitrate media. Journal of Colloid and Interface Science, 2006, 294, 429-435.	9.4	18
38	Synergistic extraction of rare earths(III) from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and di-(2-ethylhexyl)-2-ethylhexylphosphonate. Journal of Chemical Technology and Biotechnology, 2006, 81, 1384-1390.	3.2	17
39	Kinetics of Cerium(IV) Extraction with DEHEHP From HNO3â€HF Medium Using a Constant Interfacial Cell with Laminar Flow. Solvent Extraction and Ion Exchange, 2006, 24, 165-176.	2.0	15
40	Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis(2,4,4-trimethylpentyl)phosphinic acid. Analytica Chimica Acta, 2005, 533, 83-88.	5.4	106
41	Liquid–Liquid Extraction of Cerium(IV) from Nitric Acid Media by Diâ€(2â€Ethylhexyl) 2â€Ethylhexyl Phosphonate (DEHEHP). Solvent Extraction and Ion Exchange, 2004, 22, 429-447.	2.0	30
42	Coordination Reactions in the Extraction of Cerium(IV) and Fluorine(I) by DEHEHP from Mixed Nitric Acid and Hydrofluoric Acid Solutions. Solvent Extraction and Ion Exchange, 2004, 22, 813-831.	2.0	18
43	Extraction and separation of cerium(IV) from nitric acid solutions containing thorium(IV) and rare earths(III) by DEHEHP. Journal of Alloys and Compounds, 2004, 374, 438-441.	5.5	53