
Zhaohui Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11943030/publications.pdf Version: 2024-02-01

7илонии 7иоло

#	Article	IF	CITATIONS
1	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	4.7	425
2	A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 2018, 19, 84.	3.8	230
3	Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 2018, 11, 245-256.	3.9	179
4	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	3.9	159
5	CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1598.	1.7	150
6	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140
7	Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant, 2018, 11, 999-1002.	3.9	136
8	Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 2019, 38, 475-485.	2.8	136
9	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	4.1	120
10	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	4.7	116
11	Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35, 1545-1554.	2.8	74
12	Knockout of the OsNAC006 Transcription Factor Causes Drought and Heat Sensitivity in Rice. International Journal of Molecular Sciences, 2020, 21, 2288.	1.8	69
13	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	4.1	55
14	CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis. International Journal of Biological Sciences, 2018, 14, 858-862.	2.6	53
15	Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. Frontiers in Plant Science, 2019, 10, 1173.	1.7	39
16	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€target effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	4.1	23
17	Intron-Based Single Transcript Unit CRISPR Systems for Plant Genome Editing. Rice, 2020, 13, 8.	1.7	22
18	The Improvement of CRISPR-Cas9 System With Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing. Frontiers in Plant Science, 2020, 11, 621.	1.7	12

ZHAOHUI ZHONG

#	Article	IF	CITATIONS
19	Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9. Methods in Molecular Biology, 2019, 1917, 109-119.	0.4	8
20	A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants. Methods in Molecular Biology, 2019, 1917, 75-82.	0.4	3
21	Construction of a Single Transcriptional Unit for Expression of Cas9 and Single-guide RNAs for Genome Editing in Plants. Bio-protocol, 2017, 7, e2546.	0.2	2
22	Protoplast Isolation and Transfection in Rice. Methods in Molecular Biology, 2022, 2464, 83-90.	0.4	2