
Shridhar Bale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11942939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cleavage-Independent HIV-1 Env Trimers Engineered as Soluble Native Spike Mimetics for Vaccine Design. Cell Reports, 2015, 11, 539-550.	6.4	211
2	A shared structural solution for neutralizing ebolaviruses. Nature Structural and Molecular Biology, 2011, 18, 1424-1427.	8.2	113
3	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
4	Particulate Array of Well-Ordered HIV Clade C Env Trimers Elicits Neutralizing Antibodies that Display a Unique V2 Cap Approach. Immunity, 2017, 46, 804-817.e7.	14.3	107
5	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	4.1	86
6	Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathogens, 2016, 12, e1005767.	4.7	72
7	Covalent Linkage of HIV-1 Trimers to Synthetic Liposomes Elicits Improved B Cell and Antibody Responses. Journal of Virology, 2017, 91, .	3.4	71
8	Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathogens, 2012, 8, e1002916.	4.7	68
9	Ebola Virus Glycoprotein Needs an Additional Trigger, beyond Proteolytic Priming for Membrane Fusion. PLoS Neglected Tropical Diseases, 2011, 5, e1395.	3.0	64
10	Structural Basis for Differential Neutralization of Ebolaviruses. Viruses, 2012, 4, 447-470.	3.3	63
11	Structural biology of S-adenosylmethionine decarboxylase. Amino Acids, 2010, 38, 451-460.	2.7	55
12	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	12.8	50
13	Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus. Journal of Virology, 2012, 86, 2809-2816.	3.4	46
14	Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism. Journal of Virology, 2013, 87, 10385-10388.	3.4	44
15	Structural Basis for Putrescine Activation of Human <i>S</i> -Adenosylmethionine Decarboxylase. Biochemistry, 2008, 47, 13404-13417.	2.5	38
16	New Insights into the Design of Inhibitors of Human S-Adenosylmethionine Decarboxylase: Studies of Adenine C8 Substitution in Structural Analogues of S-Adenosylmethionine. Journal of Medicinal Chemistry, 2009, 52, 1388-1407.	6.4	27
17	Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 1116.	4.8	27
18	Two Synthetic Antibodies that Recognize and Neutralize Distinct Proteolytic Forms of the Ebola Virus Envelope Glycoprotein. ChemBioChem, 2012, 13, 2549-2557.	2.6	26

Shridhar Bale

#	Article	IF	CITATIONS
19	HIV-1 Receptor Binding Site-Directed Antibodies Using a VH1-2 Gene Segment Orthologue Are Activated by Env Trimer Immunization. PLoS Pathogens, 2014, 10, e1004337.	4.7	23
20	HMP Binding Protein ThiY and HMP-P Synthase THI5 Are Structural Homologues,. Biochemistry, 2010, 49, 8929-8936.	2.5	14
21	Role of the Sulfonium Center in Determining the Ligand Specificity of Human <i>S</i> -Adenosylmethionine Decarboxylase. Biochemistry, 2009, 48, 6423-6430.	2.5	12
22	Complexes of <i>Thermotoga maritimaS</i> -adenosylmethionine decarboxylase provide insights into substrate specificity. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 181-189.	2.5	7