
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1194185/publications.pdf Version: 2024-02-01

FUNILLEE

#	Article	IF	CITATIONS
1	Hierarchical Microphase Behaviors of Chiral Block Copolymers under Kinetic and Thermodynamic Control. CCS Chemistry, 2022, 4, 2460-2468.	4.6	7
2	Geomimetic Hydrothermal Synthesis of Polyimideâ€Based Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	5
3	Geomimetic Hydrothermal Synthesis of Polyimideâ€Based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
4	Precrystalline P3HT nanowires: growth-controllable solution processing and effective molecular packing transfer to thin film. CrystEngComm, 2022, 24, 1248-1257.	1.3	6
5	In Situ Supramolecular Polymerization of Micellar Nanoobjects Induced by Polymerization. ACS Macro Letters, 2022, 11, 149-155.	2.3	9
6	Innentitelbild: Geomimetic Hydrothermal Synthesis of Polyimideâ€Based Covalent Organic Frameworks (Angew. Chem. 4/2022). Angewandte Chemie, 2022, 134, .	1.6	0
7	Metal scavenging resin tethered with catechol or gallol binders via reversible addition–fragmentation chain transfer polymerisation. Polymer, 2022, 247, 124794.	1.8	1
8	Bilayer-folded lamellar mesophase induced by random polymer sequence. Nature Communications, 2022, 13, 2433.	5.8	6
9	Electrochemical synthesis of core–shell nanoparticles by seed-mediated selective deposition. Chemical Science, 2021, 12, 13557-13563.	3.7	8
10	Nucleation and Growth-Controlled Morphology Evolution of Cu Nanostructures During High-Pressure Thermal Evaporation. Journal of Korean Institute of Metals and Materials, 2021, 59, 135-141.	0.4	2
11	Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles. Journal of Controlled Release, 2021, 331, 187-197.	4.8	10
12	Clathrate Hydrate Inhibition by Polyisocyanate with Diethylammonium Group. Langmuir, 2021, 37, 4147-4153.	1.6	8
13	Nano-emulsification of oriental lacquer sap by ultrasonic wave propagation: Improvement of thin-film characteristics as a natural resin. Ultrasonics Sonochemistry, 2021, 73, 105545.	3.8	6
14	Nucleation and Growth-Controlled Facile Fabrication of Gold Nanoporous Structures for Highly Sensitive Surface-Enhanced Raman Spectroscopy Applications. Nanomaterials, 2021, 11, 1463.	1.9	2
15	Conjugationâ€Free Multilamellar Proteinâ€Lipid Hybrid Vesicles for Multifaceted Immune Responses. Advanced Healthcare Materials, 2021, 10, 2101239.	3.9	3
16	Coaxial Conjugated Polymer/Quantum Rod Assembly into Hybrid Nanowires with Preferred Quantum Rod Orientation. Chemistry of Materials, 2021, 33, 7878-7888.	3.2	3
17	Impact of symmetry-breaking of non-fullerene acceptors for efficient and stable organic solar cells. Chemical Science, 2021, 12, 14083-14097.	3.7	27
18	Ordered Microdomain Structures in Saccharide–Polystyrene–Saccharide Hybrid Conjugates. Biomacromolecules, 2021, 22, 4659-4668.	2.6	2

#	Article	IF	CITATIONS
19	Feasible tuning of barrier energy in PEDOT:PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing. Nano Energy, 2020, 67, 104207.	8.2	48
20	Supramolecular Functionalization for Improving Thermoelectric Properties of Single-Walled Carbon Nanotubes–Small Organic Molecule Hybrids. ACS Applied Materials & Interfaces, 2020, 12, 51387-51396.	4.0	13
21	Influence of 3D morphology on the performance of all-polymer solar cells processed using environmentally benign nonhalogenated solvents. Nano Energy, 2020, 77, 105106.	8.2	11
22	Symmetry breaking of Au nanospheres confined in 1D nanocylinders: exploring helical assembly by 3D transmission electron microscopy. Materials Chemistry Frontiers, 2020, 4, 3032-3039.	3.2	5
23	Spatiotemporal Self-Assembly of Peptides Dictates Cancer-Selective Toxicity. Biomacromolecules, 2020, 21, 4806-4813.	2.6	9
24	Formation of Supramolecular Polymers from Porphyrin Tripods. Macromolecules, 2020, 53, 8060-8067.	2.2	4
25	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	3.2	13
26	Glutathione-adaptive peptide amphiphile vesicles rationally designed using positionable disulfide-bridges for effective drug transport. Polymer Chemistry, 2020, 11, 4547-4556.	1.9	3
27	Soft Confined Assembly of Polymer-Tethered Inorganic Nanoparticles in Cylindrical Micelles. Macromolecules, 2020, 53, 4925-4931.	2.2	14
28	Ecofriendly Catechol Lipid Bioresin for Low-Temperature Processed Electrode Patterns with Strong Durability. ACS Applied Materials & Interfaces, 2020, 12, 16864-16876.	4.0	15
29	Alkyl side-chain dependent self-organization of small molecule and its application in high-performance organic and perovskite solar cells. Nano Energy, 2020, 72, 104708.	8.2	20
30	Tunable in-plane thermal conductivity of a single PEDOT:PSS nanotube. Nanoscale, 2020, 12, 8701-8705.	2.8	4
31	Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nature Communications, 2019, 10, 3745.	5.8	108
32	3D graphene-cellulose nanofiber hybrid scaffolds for cortical reconstruction in brain injuries. 2D Materials, 2019, 6, 045043.	2.0	14
33	Photo-crosslinkable elastomeric protein-derived supramolecular peptide hydrogel with controlled therapeutic CO-release. Nanoscale, 2019, 11, 17327-17333.	2.8	11
34	Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS Nano, 2019, 13, 11022-11033.	7.3	69
35	3D confined assembly of polymer-tethered gold nanoparticles into size-segregated structures. Materials Chemistry Frontiers, 2019, 3, 209-215.	3.2	18
36	The 3D morphological stability of P3HT nanowire-based bulk heterojunction thin films against light irradiation quantitatively resolved by TEM tomography. Journal of Materials Chemistry A, 2019, 7, 2027-2033.	5.2	7

#	Article	IF	CITATIONS
37	Polymer cubosomes of block copolymers having cross-linkable soft hydrophobic blocks. Polymer Chemistry, 2019, 10, 3778-3785.	1.9	9
38	Phosphate-Functionalized Stabilized F127 Nanoparticles: Introduction of Discrete Surface Charges and Electrophoretic Determination of Aggregation Number. Macromolecular Research, 2019, 27, 657-662.	1.0	3
39	Asymmetric polystyrene-polylactide bottlebrush random copolymers: Synthesis, self-assembly and nanoporous structures. Polymer, 2019, 175, 49-56.	1.8	12
40	Supramolecular nanocatalyst in water: successive click-driven assembly of click-derived rod amphiphiles. Materials Chemistry Frontiers, 2019, 3, 916-921.	3.2	0
41	Effect of Ionic Group on the Complex Coacervate Core Micelle Structure. Polymers, 2019, 11, 455.	2.0	20
42	Scattering-mediated absorption from heterogeneous nanoparticle assemblies in diblock copolymer micelles for SERS enhancement. Journal of Materials Chemistry C, 2019, 7, 5051-5058.	2.7	12
43	Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes. ACS Applied Materials & Interfaces, 2019, 11, 8400-8411.	4.0	7
44	High-efficiency non-halogenated solvent processable polymer/PCBM solar cells <i>via</i> fluorination-enabled optimized nanoscale morphology. Journal of Materials Chemistry A, 2019, 7, 24992-25002.	5.2	21
45	Columnar-Structured Low-Concentration Donor Molecules in Bulk Heterojunction Organic Solar Cells. ACS Omega, 2018, 3, 929-936.	1.6	12
46	Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure. Journal of the American Chemical Society, 2018, 140, 475-482.	6.6	63
47	"Drop-on-textile―patternable aqueous PEDOT composite ink providing highly stretchable and wash-resistant electrodes for electronic textiles. Dyes and Pigments, 2018, 155, 150-158.	2.0	22
48	Nanographene oxide as a switch for CW/pulsed NIR laser triggered drug release from liposomes. Materials Science and Engineering C, 2018, 82, 19-24.	3.8	23
49	Multicompartment Vesicles Formation by Emulsificationâ€Induced Assembly of Poly(ethylene) Tj ETQq1 1 0.7843 Communications, 2018, 39, 1700545.	314 rgBT / 2.0	Overlock 10 8
50	Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. Journal of Industrial and Engineering Chemistry, 2018, 60, 465-474.	2.9	26
51	Gas-Therapeutic Hydrogels: Supramolecular Carbon Monoxide-Releasing Peptide Hydrogel Patch (Adv.) Tj ETQq1	1 0.7843	14 rgBT /Ove
52	Synergy between ultrasonication and a polymer matrix in reducing particle size of molecular explosives during crystallization. CrystEngComm, 2018, 20, 7423-7427.	1.3	2
53	Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nature Communications, 2018, 9, 5327.	5.8	49
54	Supramolecular Carbon Monoxideâ€Releasing Peptide Hydrogel Patch. Advanced Functional Materials, 2018, 28, 1803051.	7.8	23

#	Article	lF	CITATIONS
55	Solution self-assembly of poly(3-hexylthiophene)–poly(lactide) brush copolymers: impact of side chain arrangement. Polymer Chemistry, 2018, 9, 3279-3286.	1.9	18
56	Peroxisomeâ€ŧargeted Supramolecular Nanoprobes Assembled with Pyreneâ€ŀabelled Peptide Amphiphiles. Chemistry - an Asian Journal, 2018, 13, 3485-3490.	1.7	4
57	Ferroelectric-mediated filamentary resistive switching in P(VDF-TrFE)/ZnO nanocomposite films. Physical Chemistry Chemical Physics, 2018, 20, 16176-16183.	1.3	17
58	Simple Solvent Engineering for High-Mobility and Thermally Robust Conjugated Polymer Nanowire Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 29824-29830.	4.0	25
59	Multifaceted Immunomodulatory Nanoliposomes: Reshaping Tumors into Vaccines for Enhanced Cancer Immunotherapy. Advanced Functional Materials, 2017, 27, 1605398.	7.8	64
60	Bioreducible Poly(ethylene glycol)–Triphenylphosphonium Conjugate as a Bioactivable Mitochondria-Targeting Nanocarrier. Biomacromolecules, 2017, 18, 1074-1085.	2.6	38
61	DNA Lipoplexâ€Based Lightâ€Harvesting Antennae. Advanced Functional Materials, 2017, 27, 1700212.	7.8	10
62	Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nature Communications, 2017, 8, 26.	5.8	177
63	Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones. Scientific Reports, 2017, 7, 45562.	1.6	3
64	The power of the ring: a pH-responsive hydrophobic epoxide monomer for superior micelle stability. Polymer Chemistry, 2017, 8, 7119-7132.	1.9	21
65	Structure-Dependent Antimicrobial Theranostic Functions of Self-Assembled Short Peptide Nanoagents. Biomacromolecules, 2017, 18, 3600-3610.	2.6	17
66	Self-assembly behavior of inconvertible star poly(acrylic acid) conformers based on p-tert-butylthiacalix[4]arene. Macromolecular Research, 2017, 25, 615-623.	1.0	3
67	A Nonchlorinated Solvent-Processable Fluorinated Planar Conjugated Polymer for Flexible Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 28817-28827.	4.0	20
68	Structure–Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 40503-40515.	4.0	31
69	Density-Controlled Freestanding Biodegradable Nanopillar Arrays Patterned via Block Copolymer Micelle Lithography. Macromolecular Materials and Engineering, 2017, 302, 1600361.	1.7	4
70	The Improvement of Skin Whitening of Phenylethyl Resorcinol by Nanostructured Lipid Carriers. Nanomaterials, 2017, 7, 241.	1.9	27
71	Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation. PLoS ONE, 2017, 12, e0186600.	1.1	2
72	Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs. International Journal of Nanomedicine, 2016, Volume 11, 5621-5632.	3.3	19

#	Article	IF	CITATIONS
73	Interfacial Crystallizationâ€Ðriven Assembly of Conjugated Polymers/Quantum Dots into Coaxial Hybrid Nanowires: Elucidation of Conjugated Polymer Arrangements by Electron Tomography. Advanced Functional Materials, 2016, 26, 3226-3235.	7.8	28
74	Coordinative Amphiphiles as Tunable siRNA Transporters. Bioconjugate Chemistry, 2016, 27, 1850-1856.	1.8	15
75	Piezoelectrically-driven production of sub 10 micrometer smart microgels. Biomicrofluidics, 2016, 10, .	1.2	0
76	Enhanced thermoelectric performance of PEDOT:PSS/PANI–CSA polymer multilayer structures. Energy and Environmental Science, 2016, 9, 2806-2811.	15.6	121
77	Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores. ACS Nano, 2016, 10, 4954-4960.	7.3	61
78	One-Dimensional Supramolecular Nanoplatforms for Theranostics Based on Co-Assembly of Peptide Amphiphiles. Biomacromolecules, 2016, 17, 3234-3243.	2.6	31
79	Intracellular thiol-responsive nanosized drug carriers self-assembled by poly(ethylene) Tj ETQq1 1 0.784314 rgB in hydrophobic blocks. RSC Advances, 2016, 6, 15558-15576.	/Overlock 1.7	10 Tf 50 50 13
80	The HA-incorporated nanostructure of a peptide–drug amphiphile for targeted anticancer drug delivery. Chemical Communications, 2016, 52, 5637-5640.	2.2	30
81	Synthesis and Characterization of Poly(ethylene glycol)/Poly(trimethylene carbonate) AB2 Miktoarm Copolymers for Anticancer Drug Delivery. Porrime, 2016, 40, 54.	0.0	1
82	Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors. Scientific Reports, 2015, 5, 14010.	1.6	21
83	Morphological and Structural Evolutions of Metal–Organic Framework Particles from Amorphous Spheres to Crystalline Hexagonal Rods. Angewandte Chemie - International Edition, 2015, 54, 10564-10568.	7.2	65
84	Oneâ€Pot Preparation of 3D Nano―and Microaggregates via In Situ Nanoparticlization of Polyacetylene Diblock Copolymers Produced by ROMP. Macromolecular Rapid Communications, 2015, 36, 1069-1074.	2.0	25
85	Triphenylphosphoniumâ€Conjugated Poly(εâ€caprolactone)â€Based Selfâ€Assembled Nanostructures as Nanosized Drugs and Drug Delivery Carriers for Mitochondriaâ€Targeting Synergistic Anticancer Drug Delivery. Advanced Functional Materials, 2015, 25, 5479-5491.	7.8	84
86	Stepwise Drugâ€Release Behavior of Onionâ€Like Vesicles Generated from Emulsificationâ€Induced Assembly of Semicrystalline Polymer Amphiphiles. Advanced Functional Materials, 2015, 25, 4570-4579.	7.8	37
87	Amphiphilic poly(ethylene glycol)-poly(Îμ-caprolactone) AB ₂ miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polymer Chemistry, 2015, 6, 531-542.	1.9	57
88	Reduction of graphene oxide/alginate composite hydrogels for enhanced adsorption of hydrophobic compounds. Nanotechnology, 2015, 26, 405602.	1.3	26
89	Thermo-processable covalent scaffolds with reticular hierarchical porosity and their high efficiency capture of carbon dioxide. Journal of Materials Chemistry A, 2015, 3, 14871-14875.	5.2	8
90	Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature. Journal of Physics and Chemistry of Solids, 2015, 87, 72-79.	1.9	25

#	Article	IF	CITATIONS
91	Supramolecular Coordination Polymer Formed from Artificial Light-Harvesting Dendrimer. Journal of the American Chemical Society, 2015, 137, 12394-12399.	6.6	62
92	Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant. ACS Applied Materials & Interfaces, 2014, 6, 22884-22893.	4.0	58
93	MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. Journal of Cell Science, 2014, 127, 4954-63.	1.2	91
94	Three-dimensional analysis of abnormal ultrastructural alteration in mitochondria of hippocampus of APP/PSEN1 transgenic mouse. Journal of Biosciences, 2014, 39, 97-105.	0.5	19
95	Cene delivery of PAMAM dendrimer conjugated with the nuclear localization signal peptide originated from fibroblast growth factor 3. International Journal of Pharmaceutics, 2014, 459, 10-18.	2.6	35
96	Topography engineering of ferroelectric crystalline copolymer film. Organic Electronics, 2014, 15, 751-757.	1.4	11
97	Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte. Current Applied Physics, 2014, 14, 603-607.	1.1	30
98	Graphene Oxide Nanosheet Wrapped White-Emissive Conjugated Polymer Nanoparticles. ACS Nano, 2014, 8, 4248-4256.	7.3	23
99	Fabrication, biofunctionalization, and simultaneous multicolor emission of hybrid "dots-on-spheres― structures for specific targeted imaging of cancer cells. RSC Advances, 2014, 4, 41378-41386.	1.7	9
100	A "Light-up―1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. Journal of Materials Chemistry B, 2014, 2, 6478-6486.	2.9	16
101	Micellar and vesicular nanoassemblies of triazole-based amphiphilic probes triggered by mercury(ii) ions in a 100% aqueous medium. Chemical Communications, 2014, 50, 14006-14009.	2.2	21
102	Precise Control of Quantum Dot Location within the P3HT- <i>b</i> -P2VP/QD Nanowires Formed by Crystallization-Driven 1D Growth of Hybrid Dimeric Seeds. Journal of the American Chemical Society, 2014, 136, 2767-2774.	6.6	76
103	PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier. Bulletin of the Korean Chemical Society, 2014, 35, 1036-1042.	1.0	9
104	Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles. Bulletin of the Korean Chemical Society, 2014, 35, 2567-2569.	1.0	23
105	Organic–inorganic vesicular hybrids driven by assembly of dendritic amphiphiles: site-selective encapsulation of nanoparticles. Chemical Communications, 2013, 49, 8003.	2.2	9
106	Clicked (AB) ₂ Câ€type miktoarm terpolymers: Synthesis, thermal and selfâ€assembly properties, and preparation of nanoporous materials. Journal of Polymer Science Part A, 2013, 51, 446-456.	2.5	7
107	Nanostar and Nanonetwork Crystals Fabricated by in Situ Nanoparticlization of Fully Conjugated Polythiophene Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 17695-17698.	6.6	75
108	Tuning Innate Immune Activation by Surface Texturing of Polymer Microparticles: The Role of Shape in Inflammasome Activation. Journal of Immunology, 2013, 190, 3525-3532.	0.4	79

#	Article	IF	CITATIONS
109	PAMAM Dendrimers Conjugated with L-Arginine and Î ³ -Aminobutyric Acid as Novel Polymeric Gene Delivery Carriers. Bulletin of the Korean Chemical Society, 2013, 34, 579-584.	1.0	8
110	Development of Multi-sample Loading Device for TEM Characterization of Hydroxyapatite Nanopowder. Bulletin of the Korean Chemical Society, 2013, 34, 788-792.	1.0	3
111	One-Pot in Situ Fabrication of Stable Nanocaterpillars Directly from Polyacetylene Diblock Copolymers Synthesized by Mild Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2012, 134, 14291-14294.	6.6	99
112	Nanoparticleâ€5tabilized Double Emulsions and Compressed Droplets. Angewandte Chemie - International Edition, 2012, 51, 145-149.	7.2	34
113	Water-supported organized structures based on wedge-shaped amphiphilic derivatives of dipyrrolyldiketone boron complexes. Physical Chemistry Chemical Physics, 2011, 13, 3843.	1.3	15
114	Responsive nematic gels from the self-assembly of aqueous nanofibres. Nature Communications, 2011, 2, 459.	5.8	105
115	Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)- <i>block</i> -poly(3-triethylene) Tj ETQq1 1 ().784314 6.6	rgBT /Overlo 207
116	Toroidal Nanostructures from Selfâ€Assembly of Block Copolypeptides Based on Poly(<scp>L</scp> â€Arginine) and βâ€6heet Peptide. Macromolecular Rapid Communications, 2011, 32, 191-19	96. ^{2.0}	25
117	Self-organization of amphiphilic diblock rod-coil molecule into supramolecular honeycomb and cylindrical aggregates and its application as Suzuki coupling reaction. Macromolecular Research, 2010, 18, 289-296.	1.0	8
118	Cyclic Peptide Facial Amphiphile Preprogrammed to Selfâ€Assemble into Bioactive Peptide Capsules. Chemistry - A European Journal, 2010, 16, 5305-5309.	1.7	29
119	Ionâ€Induced Bicontinuous Cubic and Columnar Liquid rystalline Assemblies of Discotic Block Codendrimers. Chemistry - A European Journal, 2010, 16, 9006-9009.	1.7	39
120	Interconversion of Planar Networks and Vesicles Triggered by Temperature. Macromolecular Rapid Communications, 2010, 31, 975-979.	2.0	18
121	Synthesis of Aromatic Macrocyclic Amphiphiles and their Selfâ€Assembling Behavior in Aqueous Solution. Macromolecular Rapid Communications, 2010, 31, 980-985.	2.0	3
122	Nanostructured silica-type hybrids from poly(styrene-b-ethylene oxide-b-caprolactone) copolymers. Polymer, 2010, 51, 4419-4423.	1.8	2
123	Saltâ€induced microphase separation of amorphous dendritic poly(ethylene oxide)â€∢i>blockâ€inear polystyrene copolymers. Journal of Polymer Science Part A, 2010, 48, 2372-2376.	2.5	10
124	High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010, 463, 339-343.	13.7	1,446
125	Shape-Directed Assembly of a "Macromolecular Barb―into Nanofibers: Stereospecific Cyclopolymerization of Isopropylidene Diallylmalonate. Journal of the American Chemical Society, 2010, 132, 3292-3294.	6.6	44
126	Self-organized spiral columns in laterally grafted rods. Chemical Communications, 2010, 46, 4896.	2.2	11

#	Article	IF	CITATIONS
127	Solidâ€5tate Scrolls from Hierarchical Selfâ€Assembly of Tâ€6haped Rod–Coil Molecules. Angewandte Chemie - International Edition, 2009, 48, 1664-1668.	7.2	59
128	Liquid crystal phases generated by supramolecular self-assembly of biforked amphiphilic imidazoles. Liquid Crystals, 2009, 36, 1337-1347.	0.9	14
129	Solventâ€Assisted Organized Structures Based on Amphiphilic Anionâ€Responsive Ï€â€Conjugated Systems. Chemistry - A European Journal, 2009, 15, 3706-3719.	1.7	34
130	Hydrophilic Matrixâ€Assisted Ionic Transportation in the Columnar Assembly of Amphiphilic Dendron–Coils. Chemistry - A European Journal, 2009, 15, 8683-8686.	1.7	20
131	Titelbild: Solid-State Scrolls from Hierarchical Self-Assembly of T-Shaped Rod-Coil Molecules (Angew.) Tj ETQq1 1	0.784314 1.6	rgBT /Over
132	Reversible Scrolling of Twoâ€Dimensional Sheets from the Selfâ€Assembly of Laterally Grafted Amphiphilic Rods. Angewandte Chemie - International Edition, 2009, 48, 3657-3660.	7.2	122
133	Cover Picture: Solidâ€State Scrolls from Hierarchical Selfâ€Assembly of Tâ€Shaped Rod–Coil Molecules (Angew. Chem. Int. Ed. 9/2009). Angewandte Chemie - International Edition, 2009, 48, 1511-1511.	7.2	2
134	Complex Thermal and Bulk Assembling Properties of Dendriticâ ''Linearâ ''Dendritic Triblock Copolymers Depending on the Length of the Middle Block. Macromolecules, 2009, 42, 4134-4140.	2.2	24
135	Reversible Transformation of Helical Coils and Straight Rods in Cylindrical Assembly of Elliptical Macrocycles. Journal of the American Chemical Society, 2009, 131, 17768-17770.	6.6	78
136	Channel Structures from Self-Assembled Hexameric Macrocycles in Laterally Grafted Bent Rod Molecules. Journal of the American Chemical Society, 2009, 131, 17371-17375.	6.6	29
137	Tubular Stacking of Water-Soluble Toroids Triggered by Guest Encapsulation. Journal of the American Chemical Society, 2009, 131, 18242-18243.	6.6	82
138	Aqueous nanofibers with switchable chirality formed of self-assembled dumbbell-shaped rod amphiphiles. Chemical Communications, 2009, , 6819.	2.2	30
139	Supramolecular Helical Columns from the Selfâ€Assembly of Chiral Rods. Chemistry - A European Journal, 2008, 14, 871-881.	1.7	31
140	Folding of Coordination Polymers into Doubleâ€Stranded Helical Organization. Chemistry - A European Journal, 2008, 14, 3883-3888.	1.7	35
141	Rigid–Flexible Block Molecules Based on a Laterally Extended Aromatic Segment: Hierarchical Assembly into Single Fibers, Flat Ribbons, and Twisted Ribbons. Chemistry - A European Journal, 2008, 14, 6957-6966.	1.7	47
142	Supramolecular Capsules with Gated Pores from an Amphiphilic Rod Assembly. Angewandte Chemie - International Edition, 2008, 47, 4662-4666.	7.2	117
143	Filamentous Artificial Virus from a Selfâ€Assembled Discrete Nanoribbon. Angewandte Chemie - International Edition, 2008, 47, 4525-4528.	7.2	85
144	Lateral Association of Cylindrical Nanofibers into Flat Ribbons Triggered by "Molecular Glue― Angewandte Chemie - International Edition, 2008, 47, 6375-6378.	7.2	64

#	Article	IF	CITATIONS
145	A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. Organic and Biomolecular Chemistry, 2008, 6, 1944.	1.5	27
146	Synthesis and self-assembly of propeller-shaped amphiphilic molecules. Chemical Communications, 2008, , 3061.	2.2	12
147	Self-assembly of a peptide rod–coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chemical Communications, 2008, , 1892.	2.2	56
148	Bioactive molecular sheets from self-assembly of polymerizable peptides. Chemical Communications, 2008, , 4001.	2.2	19
149	Molecular Reorganization of Paired Assemblies of T-Shaped Rodâ^'Coil Amphiphilic Molecule at the Airâ^'Water Interface. Langmuir, 2008, 24, 3930-3936.	1.6	22
150	Stepped Strips from Self-Organization of Oligo(p-phenylene) Rods with Lateral Dendritic Chains. Journal of the American Chemical Society, 2008, 130, 14448-14449.	6.6	22
151	An Extraordinary Cylinder-to-Cylinder Transition in the Aqueous Assemblies of Fluorescently Labeled Rodâ~Coil Amphiphiles. Journal of the American Chemical Society, 2008, 130, 13858-13859.	6.6	20
152	Self-assembly of Dumbbell-shaped Rod Amphiphiles Based on Dodeca-p-phenylene. Bulletin of the Korean Chemical Society, 2008, 29, 1485-1490.	1.0	4
153	Nanofibers from self-assembly of an aromatic facial amphiphile with oligo(ethylene oxide) dendrons. Chemical Communications, 2007, , 1801.	2.2	27
154	Observation of an unprecedented body centered cubic micellar mesophase from rod–coil molecules. Chemical Communications, 2007, , 2920-2922.	2.2	9
155	Carbohydrate-Coated Supramolecular Structures:Â Transformation of Nanofibers into Spherical Micelles Triggered by Guest Encapsulation. Journal of the American Chemical Society, 2007, 129, 4808-4814.	6.6	117
156	Two-Dimensional Assembly of Rod Amphiphiles into Planar Networks. Journal of the American Chemical Society, 2007, 129, 6082-6083.	6.6	60
157	Dynamic Extensionâ~'Contraction Motion in Supramolecular Springs. Journal of the American Chemical Society, 2007, 129, 10994-10995.	6.6	122
158	Tunable Columnar Organization by Twisted Stacking of End-Capped Aromatic Rods. Chemistry of Materials, 2007, 19, 6569-6574.	3.2	17
159	Controlled Self-Assembly of Asymmetric Dumbbell-Shaped Rod Amphiphiles:  Transition from Toroids to Planar Nets. Macromolecules, 2007, 40, 8355-8360.	2.2	77
160	Glycoconjugate Nanoribbons from the Self-Assembly of Carbohydrateâ^'Peptide Block Molecules for Controllable Bacterial Cell Cluster Formation. Biomacromolecules, 2007, 8, 1404-1408.	2.6	66
161	Cell-Penetrating-Peptide-Coated Nanoribbons for Intracellular Nanocarriers. Angewandte Chemie - International Edition, 2007, 46, 3475-3478.	7.2	100
162	Selfâ€Assembly of Tâ€Shaped Aromatic Amphiphiles into Stimulusâ€Responsive Nanofibers. Angewandte Chemie - International Edition, 2007, 46, 6807-6810.	7.2	110

#	Article	IF	CITATIONS
163	Controlled Bioactive Nanostructures from Selfâ€Assembly of Peptide Building Blocks. Angewandte Chemie - International Edition, 2007, 46, 9011-9014.	7.2	84
164	Tunable Bacterial Agglutination and Motility Inhibition by Selfâ€Assembled Glycoâ€Nanoribbons. Chemistry - an Asian Journal, 2007, 2, 1363-1369.	1.7	36
165	Tubular Organization with Coiled Ribbon from Amphiphilic Rigidâ `Flexible Macrocycle. Journal of the American Chemical Society, 2006, 128, 3484-3485.	6.6	111
166	Nanorings from the Self-Assembly of Amphiphilic Molecular Dumbbells. Journal of the American Chemical Society, 2006, 128, 14022-14023.	6.6	124
167	Self-Assembling Molecular Dumbbells: From Nanohelices to Nanocapsules Triggered by Guest Intercalation. Angewandte Chemie - International Edition, 2006, 45, 5304-5307.	7.2	99
168	Nanofibers with Tunable Stiffness from Self-Assembly of an Amphiphilic Wedge–Coil Molecule. Angewandte Chemie - International Edition, 2006, 45, 7195-7198.	7.2	37
169	Chain Architecture Dependent 3-Dimensional Supramolecular Assembly of Rod-Coil Molecules with a Conjugated Hexa-p-phenylene Rod. Macromolecular Rapid Communications, 2006, 27, 1684-1688.	2.0	9
170	Porphyrin Tripod as a Monomeric Building Block for Guest-Induced Reversible Supramolecular Polymerization. Macromolecules, 0, , .	2.2	1