Shangjian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11941733/publications.pdf

Version: 2024-02-01

516710 434195 1,077 77 16 31 citations g-index h-index papers 77 77 77 941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS_2) saturable absorber. Optics Express, 2014, 22, 17341.	3.4	281
2	8 × 8 × 40  Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3, 785.	9.3	115
3	Few-layer MoS_2 grown by chemical vapor deposition as a passive Q-switcher for tunable erbium-doped fiber lasers. Photonics Research, 2015, 3, A92.	7.0	48
4	Self-calibrating measurement of high-speed electro-optic phase modulators based on two-tone modulation. Optics Letters, 2014, 39, 3504.	3.3	36
5	Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber. Applied Optics, 2015, 54, 9379.	2.1	32
6	Mechanism of dissipative-soliton-resonance generation in fiber laser mode-locked by real saturable absorber. Optics Express, 2018, 26, 21314.	3.4	28
7	Self-Calibrated Microwave Characterization of High-Speed Optoelectronic Devices by Heterodyne Spectrum Mapping. Journal of Lightwave Technology, 2017, 35, 1952-1961.	4.6	27
8	Microwave pulse generation via employing an electric signal modulator to achieve time-domain mode locking in an optoelectronic oscillator. Optics Letters, 2021, 46, 2107.	3.3	26
9	Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters. Optics Express, 2017, 25, 2355.	3.4	25
10	Optical Frequency-Detuned Heterodyne for Self-Referenced Measurement of Photodetectors. IEEE Photonics Technology Letters, 2015, 27, 1014-1017.	2.5	24
11	Calibration-free measurement of high-speed Mach–Zehnder modulator based on low-frequency detection. Optics Letters, 2016, 41, 460.	3.3	24
12	Vector dynamics of pulsating solitons in an ultrafast fiber laser. Optics Letters, 2020, 45, 5024.	3.3	24
13	Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. Optics Express, 2020, 28, 13861.	3.4	22
14	Real-time observation of pulsating period-doubled vector solitons in a passively mode-locked fiber laser. Optics Express, 2021, 29, 14101.	3.4	21
15	Modeling an actively mode-locked optoelectronic oscillator based on electric amplitude modulation. Optics Express, 2021, 29, 23835.	3.4	19
16	On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers. Optics Express, 2017, 25, 13340.	3.4	17
17	Self-referenced frequency response measurement of high-speed photodetectors through segmental up-conversion based on low-speed photonic sampling. Optics Express, 2019, 27, 38250.	3.4	16
18	Extinction-ratio-independent electrical method for measuring chirp parameters of Mach–Zehnder modulators using frequency-shifted heterodyne. Optics Letters, 2015, 40, 2854.	3.3	15

#	Article	IF	CITATIONS
19	Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector. Optics Express, 2016, 24, 11546.	3.4	15
20	Microwave Photonic Harmonic Down-Conversion Based on Cascaded Four-Wave Mixing in a Semiconductor Optical Amplifier. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	14
21	Measurement of modulation index and half-wave voltage of an electro-optical phase modulator with a dispersion-based phase filter. Optics Communications, 2012, 285, 5089-5093.	2.1	13
22	Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors. Optics Communications, 2016, 373, 110-113.	2.1	13
23	Analog-to-digital converters using photonic technology. Science Bulletin, 2014, 59, 2666-2671.	1.7	12
24	Photonic Microwave Frequency Measurement Based on Frequency-Configurable Pilot Tones. IEEE Photonics Technology Letters, 2018, 30, 363-366.	2.5	12
25	Self-Calibrating Microwave Characterization of Broadband Mach–Zehnder Electro-Optic Modulator Employing Low-Speed Photonic Down-Conversion Sampling and Low-Frequency Detection. Journal of Lightwave Technology, 2019, 37, 2668-2674.	4.6	12
26	Calibration-Free Electrical Spectrum Analysis for Microwave Characterization of Optical Phase Modulators Using Frequency-Shifted Heterodyning. IEEE Photonics Journal, 2014, 6, 1-8.	2.0	11
27	Calibration-free and bias-drift-free microwave characterization of dual-drive Mach–Zehnder modulators using heterodyne mixing. Optical Engineering, 2015, 55, 031109.	1.0	11
28	All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier. Optics Communications, 2012, 285, 1001-1004.	2.1	10
29	Electrical Probing Test for Characterizing Wideband Optical Transceiving Devices with Self-Reference and On-Chip Capability. Journal of Lightwave Technology, 2018, 36, 4326-4336.	4.6	10
30	Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation. Optics Letters, 2015, 40, 4727.	3.3	9
31	Fiber chromatic dispersion measurement with improved measurement range based on chirped intensity modulation. Photonics Research, 2014, 2, B26.	7.0	8
32	Bias-Independent and Self-Calibrated Electrical Method for Microwave Characterization of Dual-Parallel Mach–Zehnder Modulators Based on Two-Tone and Bias-Swing Modulation. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2636-2643.	4.6	8
33	Self-Calibrated and Extinction-Ratio-Independent Microwave Characterization of Electrooptic Mach–Zehnder Modulators. IEEE Microwave and Wireless Components Letters, 2017, 27, 948-950.	3.2	8
34	Flexible ultra-wide frequency microwave down-conversion based on re-circulating four-wave mixing in a semiconductor optical amplifier. Optics Express, 2020, 28, 17782.	3.4	8
35	Harmonically mode-locked optoelectronic oscillator with ultra-low supermode noise. Optics and Laser Technology, 2022, 151, 108036.	4.6	8
36	Self-calibrated electrical measurement of magnitude response of optical filters based on dual-frequency-shifted heterodyne. Optical Engineering, 2016, 55, 056105.	1.0	7

#	Article	IF	Citations
37	Accurate Calibration and Measurement of Optoelectronic Devices. Journal of Lightwave Technology, 2021, 39, 3687-3698.	4.6	7
38	All-optical 2R regeneration based on self-induced polarization rotation in a single semiconductor optical amplifier. Science Bulletin, 2009, 54, 3704-3708.	1.7	6
39	Fabrication and Performance of Micron Thick CsI(Tl) Films for X-Ray Imaging Application. IEEE Transactions on Nuclear Science, 2016, 63, 1827-1831.	2.0	6
40	Hyperfine Intrinsic Magnitude and Phase Response Measurement of Optical Filters Based on Electro-Optical Harmonics Heterodyne and Wiener–Lee Transformation. Journal of Lightwave Technology, 2019, 37, 2654-2660.	4.6	6
41	Frequency response measurement of high-speed photodiodes based on a photonic sampling of an envelope-modulated microwave subcarrier. Optics Express, 2021, 29, 9836.	3.4	6
42	Broadband Transient Waveform Digitizer Based on Photonic Time Stretch. Journal of Lightwave Technology, 2021, 39, 2880-2887.	4.6	6
43	Multi-format microwave signal generation based on an optoelectronic oscillator. Optics Express, 2021, 29, 30834.	3.4	6
44	Frequency response measurement of high-speed electro-optic phase modulators via a single scan based on low-speed photonic sampling and low-frequency detection. Optics Express, 2019, 27, 32370.	3.4	6
45	Precise measurement of fiber dispersion based on phaseâ€modulated signal fading. Microwave and Optical Technology Letters, 2014, 56, 427-430.	1.4	5
46	High-frequency characterization of high-speed modulators and photodetectors in a link with low-speed photonic sampling. Journal of Semiconductors, 2021, 42, 042303.	3.7	5
47	Wideband and High-Resolution Measurement of Magnitude-Frequency Response for Optical Filters Based on Fixed-Low-Frequency Heterodyne Detection. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	4
48	Broadband high-resolution microwave frequency measurement based on photonic undersampling via using three cavity-less optical pulse sources with coprime repetition rates. Applied Optics, 2020, 59, 8056.	1.8	3
49	Cross-referenced deadband-free microwave frequency measurement with cascaded-four-wave-mixing-based photonic harmonic down-conversion. Optics Express, 2019, 27, 23714.	3.4	3
50	Flat Optical Frequency Comb Generation Based on Monolithic Integrated LNOI Intensity and Phase Modulator. Photonics, 2022, 9, 495.	2.0	3
51	Characterization of nonlinearity using polynomial transfer function of allâ€optical sampling. Microwave and Optical Technology Letters, 2011, 53, 216-219.	1.4	2
52	Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultrawide Frequency Microwave Down-Conversion. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3557-3563.	4.6	2
53	2.56 Tbps (8 $ ilde{A}-$ 8 $ ilde{A}-$ 40 Gbps) Fully-Integrated Silicon Photonic Interconnection Circuit. , 2016, , .		2
54	Self-reference frequency response characterization of photodiode chips based on photonic sampling and microwave de-embedding. Optics Express, 2022, 30, 2299.	3.4	2

#	Article	IF	CITATIONS
55	Frequency Response Enhancement of Photonic Sampling Based on Cavity-Less Ultra-Short Optical Pulse Source. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
56	Fiber-dispersion-induced signal fading for measuring high-frequency modulation efficiency of an electrooptic phase modulator. , 2011, , .		1
57	Optimized Single-Shot Photonic Time-Stretch Digitizer Using Complementary Parallel Single-Sideband Modulation Architecture and Digital Signal Processing. IEEE Photonics Journal, 2017, 9, 1-14.	2.0	1
58	Influence of the humid air on the structure and fluorescent property of CsI:Tl thin film. Journal of Materials Science: Materials in Electronics, 2019, 30, 7691-7694.	2.2	1
59	Independently Self-calibrated Frequency Response Measurements of High-speed Modulators and Photodetectors with Same Setup. , 2016, , .		1
60	Accurate time-delay measurement of optical delay components based on frequency-shifted self-heterodyne spectrum. , 2018, , .		1
61	Costas-coded linear frequency modulation waveform generation based on a VCO-controlled Fourier domain mode locking optoelectronic oscillator. Optics Express, 2021, 29, 40274.	3.4	1
62	160 GSa/s all-optical pulsed sampling with a single semiconductor optical amplifier. , 2014, , .		0
63	Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion. Proceedings of SPIE, 2014, , .	0.8	0
64	Hyperfine magnitude response measurement for optical filters based on low-frequency detection. , 2016, , .		0
65	Self-referenced electrical method for measuring frequency response of high-speed Mach-Zehnder modulators based on two-tone modulation. , 2016, , .		0
66	Photonic integrated chips for low-power, high-bandwidth communications. , 2017, , .		0
67	Self-Calibrated Measurement of Frequency Response for Broadband Photodetectors Based on Two-Tone Photonic Sampling. Frontiers in Physics, 2021, 9, .	2.1	0
68	Measuring Chromatic Dispersion Using Periodic Fading of Phase Modulation. , 2014, , .		0
69	All-electrical Microwave Characterization of High-speed Optoelectronic Devices with Self-reference and On-chip Capability. , $2018, $, .		0
70	Magnitude response measurement of electro-optic intensity modulator based on photonic downconversion sampling. , 2018, , .		0
71	High-resolution and Self-calibration Microwave Characterization of High-speed Optoelectronic Devices. , 2019, , .		0
72	Deadband-free Microwave Frequency Measurement by Cross-referenced Photonic Harmonic Down-conversion based on Cascaded Four Wave Mixing of SOAs., 2019,,.		0

#	Article	IF	CITATIONS
73	Simultaneous frequency response measurement of electro-absorption modulation transceivers based on self-referenced pilot operation. Optics Express, 2021, 29, 39241-39248.	3.4	O
74	Photonic microwave frequency measurement based on harmonic down-conversion by using a semiconductor optical amplifier. , 2020, , .		0
75	Computational model of an active mode locking optoelectronic oscillator. , 2021, , .		O
76	Self-referenced electro-optic response measurement of dual-parallel Mach-Zehnder modulators employing single-tone level control and low-frequency bias swing. Optics Express, 2022, 30, 12596.	3.4	0
77	Self-calibrated characterization of high-speed photodetectors based on slowly-varying-envelope photonic sampling. , 2022, , .		0