Hai-bo Hu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1194170/hai-bo-hu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55	2,310 citations	28	47
papers		h-index	g-index
60	3,160 ext. citations	10.5	5.77
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
55	Modulation of pore-size in N, S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. <i>Nano Energy</i> , 2022 , 92, 106750	17.1	3
54	Synergetic Chemistry and Interface Engineering of Hydrogel Electrolyte to Strengthen Durability of Solid-State Zn-Air Batteries <i>Small Methods</i> , 2022 , 6, e2101276	12.8	7
53	Dual Defocused Laser Pyrolysis: A Lasing-Centric Strategy for Defect and Morphological Optimization in Microsupercapacitor Electrodes <i>Small Methods</i> , 2022 , e2101616	12.8	
52	Micro-Redoxcapacitor: A Hybrid Architecture Out of the Notorious Energy-Power Density Dilemma (Adv. Funct. Mater. 19/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270111	15.6	1
51	Interlayer Structure Engineering of MXene-Based Capacitor-Type Electrode for Hybrid Micro-Supercapacitor toward Battery-Level Energy Density. <i>Advanced Science</i> , 2021 , 8, e2100775	13.6	28
50	An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19262-19271	16.4	81
49	Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3212-3221	16.4	180
48	Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal®rganic Frameworks: Enhanced Oxygen Reduction Performance. <i>Angewandte Chemie</i> , 2021 , 133, 3249-3258	3.6	22
47	SnS2/MXene derived TiO2 hybrid for ultra-fast room temperature NO2 gas sensing. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 7407-7416	7.1	7
46	An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. <i>Angewandte Chemie</i> , 2021 , 133, 19411-19420	3.6	11
45	Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. <i>Energy Storage Materials</i> , 2021 , 40, 10-21	19.4	18
44	Battery-Sensor Hybrid: A New Gas Sensing Paradigm with Complete Energy Self-Sufficiency. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	3
43	Liquidfhetal-bridge~island design: seamless integration of intrinsically stretchable liquid metal circuits and mechanically deformable structures for ultra-stretchable all-solid-state rechargeable ZnBir battery arrays. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5097-5110	13	12
42	Rolled-up island-bridge (RIB): a new and general electrode configuration design for a wire-shaped stretchable micro-supercapacitor array. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2899-2911	13	7
41	Ion Sieve: Tailoring Zn Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes <i>ACS Nano</i> , 2021 ,	16.7	15
40	Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries. Frontiers in Chemistry, 2020, 8, 546728	5	6
39	Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. <i>Nano Energy</i> , 2020 , 74, 104812	17.1	49

38	Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization. <i>Environmental Science & Environmental S</i>	10.3	10
37	Fe0.96S/Co8FeS8 nanoparticles co-embedded in porous N, S codoped carbon with enhanced bifunctional electrocatalystic activities for all-solid-state Zn-air batteries. <i>Applied Surface Science</i> , 2020 , 505, 144212	6.7	14
36	N-Doped-carbon/cobalt-nanoparticle/N-doped-carbon multi-layer sandwich nanohybrids derived from cobalt MOFs having 3D molecular structures as bifunctional electrocatalysts for on-chip solid-state Zn-air batteries. <i>Nanoscale</i> , 2020 , 12, 3750-3762	7.7	40
35	Enhanced Catalytic Activity of LaMnO3 by A-Site Substitution as Air Electrode of ZnAir Batteries with Attractive Durability. <i>Energy & Damp; Fuels</i> , 2020 , 34, 10170-10177	4.1	12
34	Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. <i>ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery. ACS Applied Materials & Doping of Transition Metals within Graphene Hosts for Bifunction Metals & Doping of Transition Metals within Graphene Hosts for Bifunction Metals & Doping of Transition Metals within Metals & Doping of Transition Metals & Doping</i>	9.5	10
33	Inverse-opal-structured hybrids of N, S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118209	21.8	86
32	Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All-Solid-State Stretchable Micro-Supercapacitor Arrays. <i>Advanced Science</i> , 2019 , 6, 1900529	13.6	143
31	N- and S-doped porous carbon decorated with in-situ synthesized Co N i bimetallic sulfides particles: A cathode catalyst of rechargeable Zn-air batteries. <i>Carbon</i> , 2019 , 146, 476-485	10.4	40
30	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. <i>Frontiers in Chemistry</i> , 2019 , 7, 524	5	16
29	Planar all-solid-state rechargeable ZnEir batteries for compact wearable energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17581-17593	13	77
28	Confined growth of MoSe2 nanosheets in N-doped carbon shell with hierarchical porous structure for efficient hydrogen evolution. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2409-2416	5.8	13
27	Facile synthesis of sesame-husk-like porous SnO2 nanocylinders as anodes for high-performance lithium-ion batteries. <i>Micro and Nano Letters</i> , 2019 , 14, 178-181	0.9	2
26	A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14651-14663	7.1	15
25	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. <i>Nano Research</i> , 2018 , 11, 5799-5811	10	71
24	Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn\(\text{B}\)ir battery. NPG Asia Materials, 2018, 10, 670-684	10.3	58
23	Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14876-14884	13	46
22	Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance. <i>Nano-Micro Letters</i> , 2017 , 9, 19	19.5	39
21	Highly Flexible and Bright Electroluminescent Devices Based on Ag Nanowire Electrodes and Top-Emission Structure. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600535	6.4	42

20	Fabrication of Orientation-Tunable Si Nanowires on Silicon Pyramids with Omnidirectional Light Absorption. <i>Langmuir</i> , 2017 , 33, 3569-3575	4	14
19	Coaxial-Structured Weavable and Wearable Electroluminescent Fibers. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700401	6.4	38
18	An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19639-19648	13	92
17	3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors. <i>Small</i> , 2016 , 12, 3059-69	11	94
16	Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. <i>Energy Storage Materials</i> , 2015 , 1, 82-102	19.4	92
15	Flexible Si/PEDOT:PSS hybrid solar cells. <i>Nano Research</i> , 2015 , 8, 3141-3149	10	16
14	Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 617-623	13	39
13	Bearing capacity of steel fiber reinforced reactive powder concrete confined by spirals. <i>Materials and Structures/Materiaux Et Constructions</i> , 2015 , 48, 2613-2628	3.4	6
12	Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1490) 2 3149	0 3 9
11	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20916-20	922	62
10	Magnetically responsive photonic watermarks on banknotes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3695	7.1	100
9	Low-cost, acid/alkaline-resistant, and fluorine-free superhydrophobic fabric coating from onionlike carbon microspheres converted from waste polyethylene terephthalate. <i>Environmental Science & Environmental Science</i>	10.3	39
8	Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2621	13	78
7	Magnetically controllable colloidal photonic crystals: unique features and intriguing applications. Journal of Materials Chemistry C, 2013 , 1, 6013	7.1	42
6	Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. <i>Scientific Reports</i> , 2013 , 3, 1484	4.9	88
5	Visually readable and highly stable self-display photonic humidity sensor. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1021-1027		60
4	Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1104	8	101
3	Thermo- and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. <i>Polymer Chemistry</i> , 2011 , 2, 363-371	4.9	82

Reusable photonic wordpad with water as ink prepared by radical polymerization. *Journal of Materials Chemistry*, **2011**, 21, 13062

26

Micro-Redoxcapacitor: A Hybrid Architecture Out of the Notorious Energy-Power Density Dilemma. *Advanced Functional Materials*,2111805

15.6 5