Andrea Velardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11941646/publications.pdf

Version: 2024-02-01

135 16,540 53
papers citations h-index

139 11054 times ranked citing authors

119

g-index

139 all docs 139 docs citations

#	Article	IF	Citations
1	Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants. Science, 2002, 295, 2097-2100.	6.0	3,071
2	Treatment of High-Risk Acute Leukemia with T-Cell–Depleted Stem Cells from Related Donors with One Fully Mismatched HLA Haplotype. New England Journal of Medicine, 1998, 339, 1186-1193.	13.9	1,141
3	Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood, 2011, 117, 3921-3928.	0.6	940
4	Role of Natural Killer Cell Alloreactivity in HLA-Mismatched Hematopoietic Stem Cell Transplantation. Blood, 1999, 94, 333-339.	0.6	884
5	Full Haplotype-Mismatched Hematopoietic Stem-Cell Transplantation: A Phase II Study in Patients With Acute Leukemia at High Risk of Relapse. Journal of Clinical Oncology, 2005, 23, 3447-3454.	0.8	677
6	Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value Blood, 2007, 110, 433-440.	0.6	550
7	Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood, 2003, 102, 814-819.	0.6	515
8	Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood, 2002, 100, 1935-1947.	0.6	449
9	Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood, 2009, 114, 2667-2677.	0.6	363
10	HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood, 2014, 124, 638-644.	0.6	358
11	Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood, 2002, 100, 3825-3827.	0.6	356
12	Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood, 2011, 118, 3273-3279.	0.6	356
13	Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood, 2005, 106, 4397-4406.	0.6	343
14	NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. Journal of Clinical Investigation, 2009, 119, 1251-1263.	3.9	313
15	Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncology, The, 2012, 13, 366-374.	5.1	289
16	Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation. New England Journal of Medicine, 2014, 370, 421-432.	13.9	265
17	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	0.6	259
18	The Effect of KIR Ligand Incompatibility on the Outcome of Unrelated Donor Transplantation: A Report from the Center for International Blood and Marrow Transplant Research, the European Blood and Marrow Transplant Registry, and the Dutch Registry. Biology of Blood and Marrow Transplantation, 2006, 12, 876-884.	2.0	241

#	Article	IF	Citations
19	A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood, 2003, 102, 3807-3814.	0.6	220
20	Survival after T cell–depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood, 2008, 112, 2990-2995.	0.6	217
21	NK cells: a lesson from mismatched hematopoietic transplantation. Trends in Immunology, 2002, 23, 438-444.	2.9	191
22	Thymosin $\hat{l}\pm 1$ activates dendritic cells for antifungal Th1 resistance through Toll-like receptor signaling. Blood, 2004, 103, 4232-4239.	0.6	189
23	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	0.6	183
24	Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype–mismatched hematopoietic transplants. Blood, 2001, 97, 2514-2521.	0.6	182
25	Thymosin $\hat{l}\pm 1$ activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	0.6	172
26	Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunological Reviews, 2006, 214, 202-218.	2.8	149
27	HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood, 2014, 124, 3996-4003.	0.6	146
28	Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Current Opinion in Immunology, 2009, 21, 525-530.	2.4	137
29	NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 84-90.	0.6	134
30	Increased Ratio of CD31 $+$ /CD42 \hat{a}^{-} Microparticles to Endothelial Progenitors as a Novel Marker of Atherosclerosis in Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2530-2535.	1.1	128
31	Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica, 2016, 101, 626-633.	1.7	128
32	Dendritic Cells Pulsed with Fungal RNA Induce Protective Immunity to <i>Candida albicans</i> In Hematopoietic Transplantation. Journal of Immunology, 2002, 168, 2904-2913.	0.4	126
33	TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	0.6	117
34	Larger Size of Donor Alloreactive NK Cell Repertoire Correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia Patients. Clinical Cancer Research, 2016, 22, 1914-1921.	3.2	110
35	Haploidentical hematopoietic transplantation from KIR ligand–mismatched donors with activating KIRs reduces nonrelapse mortality. Blood, 2015, 125, 3173-3182.	0.6	108
36	Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Current Opinion in Immunology, 2005, 17, 211-217.	2.4	106

3

#	Article	IF	Citations
37	Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. Blood, 2008, 112, 708-710.	0.6	105
38	Cellular therapy: exploiting NK cell alloreactivity in transplantation. Current Opinion in Hematology, 2001, 8, 355-359.	1.2	80
39	Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Current Opinion in Oncology, 2007, 19, 142-147.	1.1	78
40	Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis, 2008, 197, 757-767.	0.4	76
41	Role of KIRs and KIR ligands in hematopoietic transplantation. Current Opinion in Immunology, 2008, 20, 581-587.	2.4	75
42	"Designed―grafts for HLA-haploidentical stem cell transplantation. Blood, 2014, 123, 967-973.	0.6	71
43	Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell–depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood, 2001, 97, 1483-1490.	0.6	70
44	T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight, 2017, 2, .	2.3	68
45	Involvement of CD44 variant isoforms in hyaluronate adhesion by human activated T cells. European Journal of Immunology, 1995, 25, 2932-2939.	1.6	67
46	Protection of Killer Antiidiotypic Antibodies against Early Invasive Aspergillosis in a Murine Model of Allogeneic T-Cell-Depleted Bone Marrow Transplantation. Infection and Immunity, 2002, 70, 2375-2382.	1.0	67
47	Transplants across human leukocyte antigen barriers. Seminars in Hematology, 2002, 39, 48-56.	1.8	66
48	Significance of Ethnicity in the Risk of Acute Graft-versus-Host Disease and Leukemia Relapse after Unrelated Donor Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 1197-1203.	2.0	63
49	Foxp3+ regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis. Nature Communications, 2017, 8, 15068.	5.8	63
50	Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 76-83.	0.6	61
51	Natural Killer Cell Alloreactivity for Leukemia Therapy. Journal of Immunotherapy, 2005, 28, 175-182.	1.2	58
52	Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-Î ³ via DAPK1. Cell Host and Microbe, 2016, 20, 744-757.	5.1	56
53	Non-MHC-restricted cytotoxic cells: their roles in the control and treatment of leukaemias. British Journal of Haematology, 2001, 114, 11-24.	1.2	54
54	Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood, 2016, 128, 2616-2623.	0.6	54

#	Article	IF	CITATIONS
55	Killer-cell immunoglobulin-like receptors reactivity and outcome of stem cell transplant. Current Opinion in Hematology, 2012, 19, 319-323.	1.2	51
56	Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	1.1	47
57	Natural killer cell alloreactivity 10 years later. Current Opinion in Hematology, 2012, 19, 421-426.	1.2	43
58	The impact of donor natural killer cell alloreactivity on allogeneic hematopoietic transplantation. Transplant Immunology, 2005, 14, 203-206.	0.6	42
59	Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 459-466.	0.7	40
60	Jack of all trades: thymosin $\hat{l}\pm 1$ and its pleiotropy. Annals of the New York Academy of Sciences, 2012, 1269, 1-6.	1.8	40
61	Natural killer cell recognition of missing self and haploidentical hematopoietic transplantation. Seminars in Cancer Biology, 2006, 16, 404-411.	4.3	39
62	Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2004, 33, 248-255.	0.6	38
63	Alloreactive natural killer cells in mismatched hematopoietic stem cell transplantation. Blood Cells, Molecules, and Diseases, 2004, 33, 216-221.	0.6	34
64	Haploidentical age-adapted myeloablative transplant and regulatory and effector T cells for acute myeloid leukemia. Blood Advances, 2021, 5, 1199-1208.	2.5	34
65	Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in the Era of Tyrosine Kinase Inhibitors: A Registry-Based Study of the Italian Blood and Marrow Transplantation Society (GITMO). Biology of Blood and Marrow Transplantation, 2019, 25, 2388-2397.	2.0	33
66	Natural Killer Cell Alloreactivity in Haploidentical Hematopoietic Stem Cell Transplantation. International Journal of Hematology, 2005, 81, 13-17.	0.7	32
67	The Effect of TNF-α on Regulatory T Cell Function in Graft-versus-Host Disease. Frontiers in Immunology, 2018, 9, 356.	2.2	32
68	Immunotherapeutic Approaches for Hematologic Malignancies. Hematology American Society of Hematology Education Program, 2004, 2004, 337-353.	0.9	31
69	Homozygosity for human leucocyte antigen-C ligands of KIR2DL1 is associated with increased risk of relapse after human leucocyte antigen-C-matched unrelated donor haematopoietic stem cell transplantation. British Journal of Haematology, 2005, 131, 483-486.	1.2	31
70	The Role of Megadose CD34+ Progenitor Cells in the Treatment of Leukemia Patients without a Matched Donor and in Tolerance Induction for Organ Transplantation. Annals of the New York Academy of Sciences, 1999, 872, 336-350.	1.8	30
71	Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 55-62.	0.6	28
72	Haploidentical transplant in patients with myelodysplastic syndrome. Blood Advances, 2017, 1, 1876-1883.	2.5	28

#	Article	IF	Citations
73	The Evolution of T Cell Depleted Haploidentical Transplantation. Frontiers in Immunology, 2019, 10, 2769.	2.2	28
74	Clinical impact of natural killer cell reconstitution after allogeneic hematopoietic transplantation. Seminars in Immunopathology, 2008, 30, 489-503.	2.8	27
75	Thymosin $\hat{l}\pm 1$ to harness immunity to pathogens after haploidentical hematopoietic transplantation. Annals of the New York Academy of Sciences, 2010, 1194, 153-161.	1.8	27
76	Haploidentical Hematopoietic Stem Cell Transplantation With a Megadose T-Cell–Depleted Graft: Harnessing Natural and Adaptive Immunity. Seminars in Oncology, 2012, 39, 643-652.	0.8	25
77	CD44 signaling through p56lck involves lateral association with CD4 in human CD4+ T cells. International Immunology, 1999, 11, 1085-1092.	1.8	24
78	CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-lg. Microbes and Infection, 2005, 7, 1040-1048.	1.0	24
79	Clinical-Grade–Expanded Regulatory T Cells Prevent Graft-versus-Host Disease While Allowing a Powerful T Cell–Dependent Graft-versus-Leukemia Effect in Murine Models. Biology of Blood and Marrow Transplantation, 2017, 23, 1847-1851.	2.0	24
80	Isolation and characterization of Leu 7+ germinal-center cells with the T helper-cell phenotype and granular lymphocyte morphology. Journal of Clinical Immunology, 1986, 6, 205-215.	2.0	23
81	Opposing functions of activatory T-cell receptors and inhibitory NK-cell receptors on cytotoxic T cells. Trends in Immunology, 1996, 17, 450-453.	7.5	23
82	Adhesion molecule-mediated signals regulate major histocompatibility complex-unrestricted and CD3/T cell receptor-triggered cytotoxicity. European Journal of Immunology, 1992, 22, 2047-2053.	1.6	22
83	Hematopoietic Stem Cell Transplantation from Alternative Donors for High-Risk Acute Leukemia: The Haploidentical Option. Current Stem Cell Research and Therapy, 2007, 2, 105-112.	0.6	21
84	Expansion of CD56-Negative, CD16-Positive, KIR-Expressing Natural Killer Cells after T Cell-Depleted Haploidentical Hematopoietic Stem Cell Transplantation. Acta Haematologica, 2011, 126, 13-20.	0.7	20
85	Incidence of HLA Loss in a Global Multicentric Cohort of Post-Transplantation Relapses: Results from the Hlaloss Collaborative Study. Blood, 2018, 132, 818-818.	0.6	19
86	Natural killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: a study on behalf of the CTIWP of the EBMT. Bone Marrow Transplantation, 2021, 56, 1900-1907.	1.3	18
87	Genetic Polymorphisms Affecting IDO1 or IDO2 Activity Differently Associate With Aspergillosis in Humans. Frontiers in Immunology, 2019, 10, 890.	2.2	16
88	Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biology of Blood and Marrow Transplantation, 2020, 26, 2204-2210.	2.0	15
89	Haplo-BMT: which approach?. Blood, 2013, 121, 719-720.	0.6	14
90	CD4+FOXP3+ Regulatory T Cell Therapies in HLA Haploidentical Hematopoietic Transplantation. Frontiers in Immunology, 2019, 10, 2901.	2.2	13

#	Article	IF	Citations
91	Natural killer cells as a therapeutic tool in mismatched transplantation. Best Practice and Research in Clinical Haematology, 2004, 17, 427-438.	0.7	11
92	Identifying NK Alloreactive Donors for Haploidentical Hematopoietic Stem Cell Transplantation. Methods in Molecular Biology, 2016, 1393, 141-145.	0.4	11
93	T cell depletion and no post transplant immune suppression allow separation of graft versus leukemia from graft versus host disease. Bone Marrow Transplantation, 2019, 54, 775-779.	1.3	9
94	CMV MANAGEMENT WITH SPECIFIC IMMUNOGLOBULINS: A MULTICENTRIC RETROSPECTIVE ANALYSIS ON 92 ALLOTRANSPLANTED PATIENTS Mediterranean Journal of Hematology and Infectious Diseases, 2019, 11, e2019048.	0.5	9
95	Tâ€cell–depleted haploidentical stem cell transplantation results improve with time in adults with acute leukemia: A study from the Acute Leukemia Working Party of the European Society of Blood and Marrow Transplantation (EBMT). Cancer, 2018, 124, 2142-2150.	2.0	8
96	TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation. Cytokine and Growth Factor Reviews, 2019, 47, 54-61.	3.2	8
97	Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting. Bone Marrow Transplantation, 2019, 54, 867-876.	1.3	8
98	Haploidentical Transplantation with Regulatory and Conventional T Cells Improves Outcome of Patients Affected By Acute Myeloid Leukemia with Complex Karyotype and/or Monosomy 7/Del(7q). Blood, 2018, 132, 2183-2183.	0.6	8
99	Novel Immune Cell-Based Therapies to Eradicate High-Risk Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 695051.	2.2	7
100	Anti-KIR (1-7F9): A Fully Human Monoclonal Antibody (mAb) That Blocks KIR2DL1, â^2 and â^3, Promoting Natural Killer (NK) Cell-Mediated Lysis of Tumor Cells In Vitro and In Vivo Blood, 2007, 110, 582-582.	0.6	7
101	ALLOGENEIC TRANSPLANTATION ACROSS THE HLA BARRIERS. Reviews in Clinical and Experimental Hematology, 2001, 5, 147-161.	0.1	6
102	Immunotherapy with alloreactive natural killer cells in haploidentical haematopoietic transplantation. The Hematology Journal, 2004, 5, S87-S90.	2.0	6
103	The Total Body Irradiation Schedule Affects Acute Leukemia Relapse After Matched T Cell–Depleted Hematopoietic Stem Cell Transplantation. International Journal of Radiation Oncology Biology Physics, 2016, 96, 832-839.	0.4	6
104	Reduction in Incidence of Severe Infections by Transplantation of High Doses of Haploidentical T Cells Selectively Depleted of Alloreactive Units. Blood, 2011, 118, 3020-3020.	0.6	5
105	Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters. Frontiers in Immunology, 2021, 12, 804988.	2.2	5
106	Progress in understanding and exploiting the immune response in solid organ and hemopoietic stem cell transplantation. Current Opinion in Immunology, 2009, 21, 522-524.	2.4	4
107	Differences in <i>Aspergillusâ€</i> specific immune recovery between Tâ€cellâ€replete and Tâ€cellâ€depleted hematopoietic transplants. European Journal of Haematology, 2015, 95, 551-557.	1.1	4
108	The "ultimate―haploidentical transplantationÂfor the elderly with high-risk acute myeloid leukemia. Bone Marrow Transplantation, 2019, 54, 803-805.	1.3	4

#	Article	IF	CITATIONS
109	Rifaximin use favoured micafungin-resistant Candida spp. infections in recipients of allogeneic hematopoietic cell transplantation. Annals of Hematology, 2021, 100, 2375-2380.	0.8	4
110	How Adoptive Immunotherapy with Conventional T and Regulatory T Cells Exerts a Gvl Effect without GvHD, after Haploidentical Hematopoietic Transplantation. Blood, 2018, 132, 3333-3333.	0.6	3
111	Total Marrow/Lymphoid Irradiation in the Conditioning Regimen for Haploidentical T-Cell-Depleted Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia: The Perugia Experience. , 2020, , 111-121.		3
112	<i>In vivo</i> biological response following lowâ€dose interleukinâ€2 in complete remission Bâ€cell nonâ€Hodgkin's lymphoma patients. European Journal of Haematology, 1996, 57, 33-37.	1.1	2
113	Natural revenge over cytomegalovirus. Blood, 2012, 119, 2438-2439.	0.6	2
114	Mother Donors Improve Outcomes after HLA Haploidentical Hematopoietic Transplantation: A Retrospective Study By the Cell Therapy and Immunobiology Working Party of the EBMT. Blood, 2016, 128, 3472-3472.	0.6	2
115	Efficacy, safety and feasibility of treatment of chronic HCV infection with directly acting agents in hematopoietic stem cell transplant recipients – study of Infectious Diseases Working Party of EBMT. Journal of Infection, 2021, , .	1.7	2
116	NK cell adoptive immunotherapy. Blood, 2005, 105, 3006-3006.	0.6	1
117	Natural killer cells and allogeneic haematopoietic cell transplantation. , 2010, , 543-553.		1
118	An Overview of Methods Required to Evaluate Donor NK Cell Alloreactivity for Haploidentical Haemopoietic Stem Cell Transplantation. Methods in Molecular Biology, 2012, 882, 469-476.	0.4	1
119	Thymosin Alfa 1 Administration Improves Immune Reconstitution and Decreases Infection-Related Mortality After HLA-Matched Sibling T Cell-Depleted Stem Cell Transplantation. Blood, 2011, 118, 1013-1013.	0.6	1
120	Adoptive Immunotherapy with Tregs and Tcons Ensures Low TRM and a Low Incidence of Post Transplant Leukaemia Relapse After HLA Haploidentical Transplants for Acute Leukemia. Blood, 2011, 118, 154-154.	0.6	1
121	Megadose of hematopoietic stem cells for haploidentical transplants. Current Opinion in Organ Transplantation, 2002, 7, 294-298.	0.8	0
122	Haploidentical Hematopoietic Stem Cell Transplantation: Step-by-Step Progress. Biology of Blood and Marrow Transplantation, 2015, 21, 579-580.	2.0	0
123	New mechanism of lymphoma-induced bone marrow aplasia. Annals of Hematology, 2016, 95, 1013-1015.	0.8	0
124	Haploidentical Transplants and NK Cell Alloreactivity., 2018, , 145-157.		0
125	Donor Natural Killer Cell Allorecognition of Missing Self in Haploidentical Hematopoietic Transplantation for Acute Myeloid Leukemia: Challenging Its Predictive Value Blood, 2006, 108, 437-437.	0.6	0
126	Allogeneic Haematopoietic Stem Cell Transplantation and Natural Killer Cell Alloreactivity., 2010,, 459-476.		0

#	ARTICLE	IF	CITATIONS
127	Deploying Natural Killer Cell Allotherapy in the Setting of HLA-Haplotype-Mismatched Hematopoietic Stem Cell Transplantation. , 2010, , 163-175.		0
128	Haploidentical Mismatched Allogeneic Versus Autologous Hematopoietic STEM CELL Transplantation in Adult Patients with ACUTE Myeloid Leukemia (AML) in First Complete Remission (CR1): A Pair-Matched Analysis From the Acute Leukemia Working Party of EBMT Blood, 2012, 120, 3093-3093.	0.6	0
129	HLA-Haploidentical Stem Cell Transplantation with Treg and Tcon Adoptive Immunotherapy promotes a Strong Graft-Versus-Leukemia Effect. Blood, 2013, 122, 907-907.	0.6	0
130	Safety and Immunogenicity Of Inactivated Varicella-Zoster Virus Vaccine In Adults With Hematologic Malignancies Receiving Treatment With Anti-CD20 Monoclonal Antibodies. Blood, 2013, 122, 2290-2290.	0.6	0
131	An Accelerated CD8+, but Not CD4+, T-Cell Reconstitution Associates with a More Favorable Outcome Following HLA-Haploidentical HSCT: Results from a Retrospective Study of the Cell Therapy and Immunobiology Working Party of the EBMT. Blood, 2015, 126, 1929-1929.	0.6	0
132	Alloreactive Natural Killer Cells Initiate a Unique Cellular and Molecular Pathway That Greatly Accelerates Immune Reconstitution after Allogeneic Bone Marrow Transplantation. Blood, 2016, 128, 548-548.	0.6	0
133	The Use of Monoclonal Antibody Directed Chimeric Antigen Receptors to Facilitate Conventional T Cell and Treg Control of GvHD and Tissue Tolerance in Murine Models. Blood, 2016, 128, 3355-3355.	0.6	0
134	Chemotherapy-Based HLA Haploidentical Transplantation with Treg/Tcon Immunotherapy in Unfit/Elderly Leukemia Patients: Powerful Gvl Effect and Insights from Animal Models. Blood, 2016, 128, 3483-3483.	0.6	0
135	ANTI-CMV Immunoglobulins in Association with ANTI-CMV Drugs in Patients with Hematological Malignancies Submitted to Allogeneic STEM CELL Transplantation: A MULTI-Center Retrospective Experience. Blood, 2018, 132, 3381-3381.	0.6	0