Warren D Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11941625/publications.pdf

Version: 2024-02-01

76326 95266 4,989 88 40 68 citations h-index g-index papers 88 88 88 5326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cognitive phenotypes in late-life depression. International Psychogeriatrics, 2023, 35, 193-205.	1.0	4
2	Influences of dopaminergic system dysfunction on late-life depression. Molecular Psychiatry, 2022, 27, 180-191.	7.9	28
3	Structural MRI-Based Measures of Accelerated Brain Aging do not Moderate the Acute Antidepressant Response in Late-Life Depression. American Journal of Geriatric Psychiatry, 2022, 30, 1015-1025.	1.2	7
4	EPI susceptibility correction introduces significant differences far from local areas of high distortion. Magnetic Resonance Imaging, 2022, 92, 1-9.	1.8	4
5	Preliminary Evidence That Cortical Amyloid Burden Predicts Poor Response to Antidepressant Medication Treatment in Cognitively Intact Individuals With Late-Life Depression. American Journal of Geriatric Psychiatry, 2021, 29, 448-457.	1.2	11
6	PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images. Magnetic Resonance in Medicine, 2021, 86, 456-470.	3.0	43
7	Subjective cognition and mood in persistent chemotherapy-related cognitive impairment. Journal of Cancer Survivorship, 2021, , 1.	2.9	5
8	Doubleâ€wavelet transform for multiâ€subject resting state functional magnetic resonance imaging data. Statistics in Medicine, 2021, 40, 6762.	1.6	2
9	Delirium, depression, and long-term cognition. International Psychogeriatrics, 2021, , 1-6.	1.0	O
10	EEG as a Functional Marker of Nicotine Activity: Evidence From a Pilot Study of Adults With Late-Life Depression. Frontiers in Psychiatry, 2021, 12, 721874.	2.6	1
11	Medial temporal lobe volumes in late-life depression: effects of age and vascular risk factors. Brain Imaging and Behavior, 2020, 14, 19-29.	2.1	14
12	Accelerated brain aging predicts impaired cognitive performance and greater disability in geriatric but not midlife adult depression. Translational Psychiatry, 2020, 10, 317.	4.8	37
13	A bayesian approach to examining default mode network functional connectivity and cognitive performance in major depressive disorder. Psychiatry Research - Neuroimaging, 2020, 301, 111102.	1.8	1
14	Persistent Intrinsic Functional Network Connectivity Alterations in Middle-Aged and Older Women With Remitted Depression. Frontiers in Psychiatry, 2020, 11, 62.	2.6	9
15	Structural changes in the aging brain. , 2020, , 59-69.		O
16	Disruption of Neural Homeostasis as a Model of Relapse and Recurrence in Late-Life Depression. American Journal of Geriatric Psychiatry, 2019, 27, 1316-1330.	1.2	27
17	Nicotinic treatment of post-chemotherapy subjective cognitive impairment: a pilot study. Journal of Cancer Survivorship, 2019, 13, 673-686.	2.9	11
18	Brain network functional connectivity and cognitive performance in major depressive disorder. Journal of Psychiatric Research, 2019, 110, 51-56.	3.1	59

#	Article	IF	CITATIONS
19	Intrinsic Functional Network Connectivity Is Associated With Clinical Symptoms and Cognition in Late-Life Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 160-170.	1.5	30
20	Cognitive performance in antidepressant-free recurrent major depressive disorder. Depression and Anxiety, 2018, 35, 694-699.	4.1	29
21	Nicotine and networks: Potential for enhancement of mood and cognition in late-life depression. Neuroscience and Biobehavioral Reviews, 2018, 84, 289-298.	6.1	30
22	Anterior-posterior gradient differences in lobar and cingulate cortex cerebral blood flow in late-life depression. Journal of Psychiatric Research, 2018, 97, 1-7.	3.1	23
23	Perspectives on the Management of Vascular Depression. American Journal of Psychiatry, 2018, 175, 1169-1175.	7.2	13
24	Predictors of recurrence in remitted late-life depression. Depression and Anxiety, 2018, 35, 658-667.	4.1	41
25	Depression Plays a Moderating Role in the Cognitive Decline Associated With Changes of Brain White Matter Hyperintensities. Journal of Clinical Psychiatry, 2018, 79, .	2.2	14
26	Transdermal Nicotine for the Treatment of Mood and Cognitive Symptoms in Nonsmokers With Late-Life Depression. Journal of Clinical Psychiatry, 2018, 79, .	2.2	12
27	APOE $\hat{l}\mu 4$ associated with preserved executive function performance and maintenance of temporal and cingulate brain volumes in younger adults. Brain Imaging and Behavior, 2017, 11, 194-204.	2.1	15
28	Lack of a Role for Alzheimer's Disease Pathology in Late-Life Depression, or Just No Relationship With Amyloid?. American Journal of Psychiatry, 2017, 174, 197-198.	7.2	5
29	CADASIL as a Useful Medical Model and Genetic Form of Vascular Depression. American Journal of Geriatric Psychiatry, 2017, 25, 719-727.	1.2	11
30	Frontocingulate cerebral blood flow and cerebrovascular reactivity associated with antidepressant response in late-life depression. Journal of Affective Disorders, 2017, 215, 103-110.	4.1	15
31	Longitudinal Cognitive Outcomes of Clinical Phenotypes of Late-Life Depression. American Journal of Geriatric Psychiatry, 2017, 25, 1123-1134.	1.2	77
32	Effects of stressful life events on cerebral white matter hyperintensity progression. International Journal of Geriatric Psychiatry, 2017, 32, e10-e17.	2.7	15
33	Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity. Journal of Affective Disorders, 2017, 210, 49-56.	4.1	26
34	Vascular depression consensus report – a critical update. BMC Medicine, 2016, 14, 161.	5 . 5	167
35	Widespread white matter but focal gray matter alterations in depressed individuals with thoughts of death. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 62, 22-28.	4.8	60
36	Disability but not social support predicts cognitive deterioration in late-life depression. International Psychogeriatrics, 2015, 27, 707-714.	1.0	17

3

#	Article	IF	CITATIONS
37	Should antidepressant medication be used in the elderly?. Expert Review of Neurotherapeutics, 2015, 15, 961-963.	2.8	14
38	Epidemiology of MRI-defined vascular depression: A longitudinal, community-based study in Korean elders. Journal of Affective Disorders, 2015, 180, 200-206.	4.1	41
39	Association of Gene Variants of the Renin-Angiotensin System With Accelerated Hippocampal Volume Loss and Cognitive Decline in Old Age. American Journal of Psychiatry, 2014, 171, 1214-1221.	7.2	21
40	Hippocampus Atrophy and the Longitudinal Course of Late-life Depression. American Journal of Geriatric Psychiatry, 2014, 22, 1504-1512.	1.2	104
41	Depression in the Elderly. New England Journal of Medicine, 2014, 371, 1228-1236.	27.0	267
42	Cingulum bundle white matter lesions influence antidepressant response in late-life depression: A pilot study. Journal of Affective Disorders, 2014, 162, 8-11.	4.1	26
43	Fiber tractâ€specific white matter lesion severity Findings in lateâ€life depression and by <i>AGTR1</i> All66C genotype. Human Brain Mapping, 2013, 34, 295-303.	3.6	46
44	Cognition as a therapeutic target in late-life depression: Potential for nicotinic therapeutics. Biochemical Pharmacology, 2013, 86, 1133-1144.	4.4	15
45	Negative life stress and longitudinal hippocampal volume changes in older adults with and without depression. Journal of Psychiatric Research, 2013, 47, 829-834.	3.1	46
46	Stressful life events, perceived stress, and 12-month course of geriatric depression: Direct effects and moderation by the 5- <i>HTTLPR</i> and <i>COMT</i> Val158Met polymorphisms. Stress, 2012, 15, 425-434.	1.8	33
47	Treatment Course With Antidepressant Therapy in Late-Life Depression. American Journal of Psychiatry, 2012, 169, 1185-1193.	7.2	76
48	Association of attentional shift and reversal learning to functional deficits in geriatric depression. International Journal of Geriatric Psychiatry, 2012, 27, 1172-1179.	2.7	12
49	AGTR1 gene variation: Association with depression and frontotemporal morphology. Psychiatry Research - Neuroimaging, 2012, 202, 104-109.	1.8	31
50	One-Year Change in Anterior Cingulate Cortex White Matter Microstructure: Relationship With Late-Life Depression Outcomes. American Journal of Geriatric Psychiatry, 2011, 19, 43-52.	1.2	52
51	Amygdala Volume in Late-Life Depression: Relationship with Age of Onset. American Journal of Geriatric Psychiatry, 2011, 19, 771-776.	1.2	56
52	Reduction of dorsolateral prefrontal cortex gray matter in late-life depression. Psychiatry Research - Neuroimaging, 2011, 193, 1-6.	1.8	95
53	Structural Integrity of the Uncinate Fasciculus and Resting State Functional Connectivity of the Ventral Prefrontal Cortex in Late Life Depression. PLoS ONE, 2011, 6, e22697.	2.5	64
54	The Brain-Derived Neurotrophic Factor Val66Met Polymorphism, Hippocampal Volume, and Cognitive Function in Geriatric Depression. American Journal of Geriatric Psychiatry, 2010, 18, 323-331.	1.2	66

#	Article	IF	CITATIONS
55	Biochemical abnormalities of the medial temporal lobe and medial prefrontal cortex in late-life depression. Psychiatry Research - Neuroimaging, 2009, 172, 49-54.	1.8	38
56	APOE related hippocampal shape alteration in geriatric depression. NeuroImage, 2009, 44, 620-626.	4.2	67
57	Influence of the MTHFR C677T Polymorphism on Magnetic Resonance Imaging Hyperintensity Volume and Cognition in Geriatric Depression. American Journal of Geriatric Psychiatry, 2009, 17, 847-855.	1.2	27
58	Short/long heterozygotes at 5HTTLPR and white matter lesions in geriatric depression. International Journal of Geriatric Psychiatry, 2008, 23, 244-248.	2.7	20
59	Social support in older individuals: The role of the BDNF Val66Met polymorphism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1205-1212.	1.7	19
60	The Brain-Derived Neurotrophic Factor VAL66MET Polymorphism and Cerebral White Matter Hyperintensities in Late-Life Depression. American Journal of Geriatric Psychiatry, 2008, 16, 263-271.	1.2	58
61	Hippocampus Shape Analysis and Late-Life Depression. PLoS ONE, 2008, 3, e1837.	2.5	77
62	Frontal White Matter Anisotropy and Antidepressant Remission in Late-Life Depression. PLoS ONE, 2008, 3, e3267.	2.5	88
63	Translational Research in Late-Life Mood Disorders: Implications for Future Intervention and Prevention Research. Neuropsychopharmacology, 2007, 32, 1857-1875.	5.4	43
64	Widespread Effects of Hyperintense Lesions on Cerebral White Matter Structure. American Journal of Roentgenology, 2007, 188, 1695-1704.	2.2	56
65	Orbitofrontal cortex volume in late life depression: influence of hyperintense lesions and genetic polymorphisms. Psychological Medicine, 2007, 37, 1763-1773.	4.5	102
66	Allelic Differences in the Brain-Derived Neurotrophic Factor Val66Met Polymorphism in Late-Life Depression. American Journal of Geriatric Psychiatry, 2007, 15, 850-857.	1.2	85
67	The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults. Psychiatry Research - Neuroimaging, 2007, 155, 173-177.	1.8	58
68	Structural integrity of the uncinate fasciculus in geriatric depression: Relationship with age of onset. Neuropsychiatric Disease and Treatment, 2007, 3, 669-74.	2.2	71
69	Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex White Matter Alterations in Late-Life Depression. Biological Psychiatry, 2006, 60, 1356-1363.	1.3	255
70	Psychiatric Disease in the Twenty-First Century: The Case for Subcortical Ischemic Depression. Biological Psychiatry, 2006, 60, 1299-1303.	1.3	52
71	White matter lesion volumes and caudate volumes in late-life depression. International Journal of Geriatric Psychiatry, 2006, 21, 1193-1198.	2.7	65
72	Lobar Distribution of Lesion Volumes in Late-Life Depression: The Biomedical Informatics Research Network (BIRN). Neuropsychopharmacology, 2006, 31, 1500-1507.	5.4	36

#	Article	IF	CITATIONS
73	Neuroimaging in late-life depression. International Review of Psychiatry, 2006, 18, 443-451.	2.8	18
74	Greater MRI lesion volumes in elderly depressed subjects than in control subjects. Psychiatry Research - Neuroimaging, 2005, 139, 1-7.	1.8	106
75	Influence of Serotonin Transporter Promoter Region Polymorphisms on Hippocampal Volumes in Late-Life Depression. Archives of General Psychiatry, 2005, 62, 537.	12.3	170
76	Cortical White Matter Microstructural Abnormalities in Bipolar Disorder. Neuropsychopharmacology, 2005, 30, 2225-2229.	5.4	146
77	Late-Life Depression and Microstructural Abnormalities in Dorsolateral Prefrontal Cortex White Matter. American Journal of Psychiatry, 2004, 161, 1293-1296.	7.2	211
78	A Systematic Review of Antidepressant Placebo-Controlled Trials for Geriatric Depression: Limitations of Current Data and Directions for the Future. Neuropsychopharmacology, 2004, 29, 2285-2299.	5.4	87
79	Medical comorbidity in late-life depression. International Journal of Geriatric Psychiatry, 2004, 19, 935-943.	2.7	61
80	Diffusion tensor imaging: background, potential, and utility in psychiatric research. Biological Psychiatry, 2004, 55, 201-207.	1.3	184
81	Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biological Psychiatry, 2004, 55, 390-397.	1.3	209
82	Smaller orbital frontal cortex volumes associated with functional disability in depressed elders. Biological Psychiatry, 2003, 53, 144-149.	1.3	80
83	Localization of age-associated white matter hyperintensities in late-life depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 539-544.	4.8	99
84	Serial MR Imaging of Volumes of Hyperintense White Matter Lesions in Elderly Patients: Correlation with Vascular Risk Factors. American Journal of Roentgenology, 2003, 181, 571-576.	2.2	118
85	White Matter Hyperintensity Progression and Late-Life Depression Outcomes. Archives of General Psychiatry, 2003, 60, 1090.	12.3	212
86	Greater Depression Severity Associated With Less Improvement in Depression-Associated Cognitive Deficits in Older Subjects. American Journal of Geriatric Psychiatry, 2002, 10, 632-635.	1.2	15
87	Greater depression severity associated with less improvement in depression-associated cognitive deficits in older subjects. American Journal of Geriatric Psychiatry, 2002, 10, 632-5.	1.2	6
88	Evidence of white matter tract disruption in MRI hyperintensities. Biological Psychiatry, 2001, 50, 179-183.	1.3	122