Dan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11939733/publications.pdf Version: 2024-02-01

ΠΑΝ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	First-principles study on the absorber for intermediate band solar cell from Si, Ge, and Sn-doped LiGaTe2. Optik, 2022, 254, 168657.	2.9	2
2	Harnessing Plasmaâ€Assisted Doping Engineering to Stabilize Metallic Phase MoSe ₂ for Fast and Durable Sodiumâ€lon Storage. Advanced Materials, 2022, 34, e2200397.	21.0	70
3	Inserting an intermediate band in Cu- and Ag-based Kesterite compounds by Sb doping: A first-principles study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114937.	3.5	9
4	A low cost and nontoxic absorber for intermediate band solar cell based on P-doped Cu2SiS3: A first-principles study. Thin Solid Films, 2021, 718, 138473.	1.8	3
5	Interface of Sn-doped AgAlTe2 and LiInTe2: A theoretical model of tandem intermediate band absorber. Applied Physics Letters, 2021, 118, .	3.3	6
6	Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS ₂ with Extraordinary Sodium Storage Performance. ACS Nano, 2021, 15, 8896-8906.	14.6	77
7	Silicon-doped FeOOH nanorods@graphene sheets as high-capacity and durable anodes for lithium-ion batteries. Applied Surface Science, 2021, 550, 149330.	6.1	23
8	Effects of thickness and interlayer on optical properties of AlN films at room and high temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	9
9	Exploration of MXene/polyaniline composites as promising anode materials for sodium ion batteries. Journal Physics D: Applied Physics, 2021, 54, 064001.	2.8	8
10	Effects of annealing temperature, thickness and substrates on optical properties of m-plane ZnO films studied by photoluminescence and temperature dependent ellipsometry. Journal of Alloys and Compounds, 2020, 848, 156631.	5.5	11
11	Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties. Applied Surface Science, 2020, 533, 147447.	6.1	18
12	Ferrocene as a Novel Additive to Enhance the Lithium-Ion Storage Capability of SnO ₂ /Graphene Composite. ACS Applied Materials & Interfaces, 2019, 11, 31943-31953.	8.0	21
13	Status of materials and device modelling for kesterite solar cells. JPhys Energy, 2019, 1, 042004.	5.3	24
14	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.	14.6	210
15	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	16.0	157
16	Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochimica Acta, 2019, 309, 242-252.	5.2	44
17	Enhanced hydrogen sorption on Mg17Al12 alloy induced adding Li: A first principle study. Applied Surface Science, 2019, 471, 239-245.	6.1	3
18	Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57, 728-736.	16.0	323

Dan Huang

#	Article	IF	CITATIONS
19	Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries. Applied Surface Science, 2019, 476, 28-35.	6.1	20
20	Hydrogenation properties of Mg17Al12 doped with alkaline-earth metal (Be, Ca, Sr and Ba). Journal of Alloys and Compounds, 2019, 774, 865-872.	5.5	15
21	Theoretical Design of the Absorber for Intermediate Band Solar Cells from Groupâ€ŧV (Si, Ge, and) Tj ETQq1 10.	784314 rg 1.5	gBT /Overlock
22	Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy, 2018, 44, 217-227.	16.0	209
23	General rules of the sub-band gaps in group-IV (Si, Ge, and Sn)-doped I-III-VI2-type chalcopyrite compounds for intermediate band solar cell: A first-principles study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 147-152.	3.5	17
24	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	21.0	180
25	Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy. Applied Surface Science, 2017, 404, 1-6.	6.1	13
26	Group-IV (Si, Ge, and Sn)-doped AgAlTe ₂ for intermediate band solar cell from first-principles study. Semiconductor Science and Technology, 2017, 32, 065007.	2.0	12
27	Difficulty of long-standing n-type conductivity in equilibrium and non-equilibrium γ -CuCl: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2743-2747.	2.1	4
28	Understanding the high p-type conductivity in Cu-excess CuAlS ₂ : A first-principles study. Applied Physics Express, 2016, 9, 031202.	2.4	5
29	Photocatalyst AgInS2 for active overall water-splitting: A first-principles study. Chemical Physics Letters, 2014, 591, 189-192.	2.6	43
30	First-principles study on CuAlTe 2 and AgAlTe 2 for water splitting. Materials Chemistry and Physics, 2014, 148, 882-886.	4.0	13
31	Investigation on AgGaSe 2 for water splitting from first-principles calculations. Europhysics Letters, 2014, 105, 37007.	2.0	8
32	First-principles prediction of a promising p-type transparent conductive material CsGeCl ₃ . Applied Physics Express, 2014, 7, 041201.	2.4	14
33	Band gap change induced by defect complexes in Cu2ZnSnS4. Thin Solid Films, 2013, 535, 265-269.	1.8	91
34	First-principles study of Î ³ -Cul for p-type transparent conducting materials. Journal Physics D: Applied Physics, 2012, 45, 145102.	2.8	40
35	Stability of the bandgap in Cu-poor CuInSe ₂ . Journal of Physics Condensed Matter, 2012, 24, 455503.	1.8	10
36	Local structures and roles of Fe ³⁺ and Cr ³⁺ in pâ€ŧype semiconductor CuAlO ₂ . Physica Status Solidi (B): Basic Research, 2012, 249, 1559-1565.	1.5	6

Dan Huang

#	Article	IF	CITATIONS
37	Mechanisms of Cr and H incorporation in stishovite determined by single-crystal EPR spectroscopy and DFT calculations. American Mineralogist, 2011, 96, 1331-1342.	1.9	8
38	First-principles study of Be doped CuAlS2 for p-type transparent conductive materials. Journal of Applied Physics, 2011, 109, .	2.5	10
39	First-principles study of CuAlS2for p-type transparent conductive materials. Journal Physics D: Applied Physics, 2010, 43, 395405.	2.8	16
40	First-principles calculations of intrinsic defects in the p-type semiconductor CuAlO ₂ . Canadian Journal of Physics, 2010, 88, 927-932.	1.1	27