
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chemical Engineering Journal, 2022, 431, 133907.	6.6	29
2	High recycling performance of holocellulose paper made from sisal fibers. Industrial Crops and Products, 2022, 176, 114389.	2.5	11
3	Highly stable silver nanowire dispersion assisted by sulfated holocellulose nanofibers for functional materials. Composites Science and Technology, 2022, 219, 109211.	3.8	10
4	Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film <i>via</i> the Hantzsch reaction for broadband UV protection. Materials Horizons, 2022, 9, 815-824.	6.4	16
5	High strength holocellulose paper from bamboo as biodegradable packaging tape. Carbohydrate Polymers, 2022, 283, 119151.	5.1	16
6	Green fabrication of high strength, transparent cellulose-based films with durable fluorescence and UV-blocking performance. Journal of Materials Chemistry A, 2022, 10, 7811-7817.	5.2	17
7	Tough, Highly Oriented, Super Thermal Insulating Regenerated All-Cellulose Sponge-Aerogel Fibers Integrating a Graded Aligned Nanostructure. Nano Letters, 2022, 22, 3516-3524.	4.5	34
8	Lithium Bonds Enable Small Biomass Moleculeâ€Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. Small, 2022, 18, e2200421.	5.2	18
9	Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping. Carbohydrate Polymers, 2022, 290, 119480.	5.1	13
10	Holocellulose nanofibrils assisted exfoliation of boron nitride nanosheets for thermal management nanocomposite films. Carbohydrate Polymers, 2022, 291, 119578.	5.1	11
11	High stability and recyclable cellulose-based fluorescent paper derived from waste bagasse for anti-counterfeiting. Cellulose, 2022, 29, 5765-5778.	2.4	4
12	Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance. ACS Applied Materials & Interfaces, 2022, 14, 34049-34058.	4.0	22
13	Surface sulfation of crab chitin for anisotropic swelling and nanodispersion. Cellulose, 2022, 29, 7099-7109.	2.4	2
14	High throughput preparation of antioxidant polysaccharide-based polymers with UV-resistant and antibacterial performance. Food Hydrocolloids, 2022, 133, 107936.	5.6	7
15	Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. Journal of Materials Chemistry C, 2021, 9, 3635-3641.	2.7	59
16	Facile solvent-free synthesis of multifunctional and recyclable ionic conductive elastomers from small biomass molecules for green wearable electronics. Journal of Materials Chemistry A, 2021, 9, 13115-13124.	5.2	43
17	Preliminary Investigations of the Mechanisms Involved in the Ultrasonication-Assisted Production of Carboxylic Cellulose Nanocrystals with Different Structural Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2021, 9, 4531-4542.	3.2	14
18	Freely Moldable Modified Starch as a Sustainable and Recyclable Plastic. Biomacromolecules, 2021, 22, 2676-2683.	2.6	19

#	Article	IF	CITATIONS
19	Highly Sensitive, Flexible, Stable, and Hydrophobic Biofoam Based on Wheat Flour for Multifunctional Sensor and Adjustable EMI Shielding Applications. ACS Applied Materials & Interfaces, 2021, 13, 30020-30029.	4.0	33
20	Multifunctional Liquidâ€Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Advanced Functional Materials, 2021, 31, 2101957.	7.8	86
21	Fabrication of tailored carboxymethyl-functionalized cellulose nanofibers via chemo-mechanical process from waste cotton textile. Cellulose, 2021, 28, 7663-7673.	2.4	6
22	Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti ₃ C ₂ T <i>_x</i> MXene Inks for Multifunctional Sensing and EMI Shielding Applications. ACS Applied Materials & Interfaces, 2021, 13, 36221-36231.	4.0	30
23	A novel celluloseâ€derived carbon aerogel@ <scp>Na₂Ti₃O₇</scp> composite for efficient photocatalytic degradation of methylene blue. Journal of Applied Polymer Science, 2021, 138, 51347.	1.3	9
24	Parameterization of classical nonpolarizable force field for hydroxide toward the largeâ€scale molecular dynamics simulation of cellulose in preâ€cooled alkali/urea aqueous solution. Journal of Applied Polymer Science, 2021, 138, 51477.	1.3	4
25	Novel PEDOT dispersion by in-situ polymerization based on sulfated nanocellulose. Chemical Engineering Journal, 2021, 418, 129533.	6.6	32
26	Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes. Journal of Bioresources and Bioproducts, 2021, 6, 243-253.	11.8	15
27	Starch Formates: Synthesis and Modification. Molecules, 2021, 26, 4882.	1.7	1
28	Acetylated cellulose nanofibers fabricated through chemo-mechanical process for stabilizing pickering emulsion. Cellulose, 2021, 28, 9677-9687.	2.4	7
29	Exceeding high concentration limits of aqueous dispersion of carbon nanotubes assisted by nanoscale xylan hydrate crystals. Chemical Engineering Journal, 2021, 419, 129602.	6.6	17
30	An Environment-Friendly Dip-Catalyst with Xylan-based Catalytic Paper Coatings. Carbohydrate Polymers, 2021, 275, 118707.	5.1	2
31	Highly conductive and multifunctional nanocomposites based on sulfated nanocellulose-assisted high dispersion limit of single-walled carbon nanotubes. Carbon, 2021, 183, 187-195.	5.4	7
32	Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274, 118652.	5.1	23
33	Efficient and portable cellulose-based colorimetric test paper for metal ion detection. Carbohydrate Polymers, 2021, 274, 118635.	5.1	14
34	Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles. Journal of Materials Chemistry A, 2021, 9, 24539-24547.	5.2	47
35	Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy, 2021, 90, 106619.	8.2	39
36	High-Efficiency Air Filter Media with a Three-Dimensional Network Composed of Core–Shell Zeolitic Imidazolate Framework-8@Tunicate Nanocellulose for PM0.3 Removal. ACS Applied Materials & Interfaces, 2021, 13, 57921-57929.	4.0	17

HAISONG QI

#	Article	IF	CITATIONS
37	Highly Strong and Transparent Ionic Conductive Hydrogel as Multifunctional Sensors. Macromolecular Materials and Engineering, 2020, 305, 2000475.	1.7	15
38	Water cast film formability of sugarcane bagasse xylans favored by side groups. Cellulose, 2020, 27, 7307-7320.	2.4	37
39	Eco-Friendly Bioinspired Interface Design for High-Performance Cellulose Nanofibril/Carbon Nanotube Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 55527-55535.	4.0	21
40	A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co ₃ O ₄ nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative <i>in situ</i> hydrogenation. Nanoscale, 2020, 12, 17373-17384.	2.8	10
41	Aerogels Based on Reduced Graphene Oxide/Cellulose Composites: Preparation and Vapour Sensing Abilities. Nanomaterials, 2020, 10, 1729.	1.9	9
42	A Facile Strategy to Fabricate <scp>Polysaccharideâ€Based</scp> Magnetic Hydrogel Based on Enamine Bond ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1263-1268.	2.6	15
43	Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS Applied Materials & Interfaces, 2020, 12, 27545-27554.	4.0	54
44	Polyimide foams with outstanding flame resistance and mechanical properties by the incorporation of noncovalent bond modified graphene oxide . New Journal of Chemistry, 2020, 44, 12068-12078.	1.4	32
45	Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO ₂ hydrogels. RSC Advances, 2020, 10, 23936-23943.	1.7	80
46	Highly Durable and Flexible Paper Electrode with a Dual Fiber Matrix Structure for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 13096-13106.	4.0	23
47	Direct Dissolution of Cellulose in NaOH/Urea/α-Lipoic Acid Aqueous Solution to Fabricate All Biomass-Based Nitrogen, Sulfur Dual-Doped Hierarchical Porous Carbon Aerogels for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 21528-21538.	4.0	58
48	Multifunctional Cellulose/rGO/Fe ₃ O ₄ Composite Aerogels for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 22088-22098.	4.0	136
49	Ultrastretchable and Antifreezing Double-Cross-Linked Cellulose Ionic Hydrogels with High Strain Sensitivity under a Broad Range of Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 14256-14265.	3.2	93
50	Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid. Green Chemistry, 2019, 21, 4732-4747.	4.6	26
51	Surfactant-assisted synthesis of mesoporous hafnium- imidazoledicarboxylic acid hybrids for highly efficient hydrogen transfer of biomass-derived carboxides. Molecular Catalysis, 2019, 479, 110611.	1.0	10
52	Effect of Plasticizer on the Morphology and Foaming Properties of Poly(vinyl alcohol) Foams by Supercritical CO2 Foaming Agents. Journal of Polymers and the Environment, 2019, 27, 2878-2885.	2.4	22
53	Sustainable hydrothermal self-assembly of hafnium–lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 1421-1431.	4.6	78
54	Integrated Production of Cellulose Nanofibers and Sodium Carboxymethylcellulose through Controllable Eco-carboxymethylation under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3792-3800.	3.2	14

#	Article	IF	CITATIONS
55	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by One‧tep Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	7.8	154
56	Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules, 2019, 20, 2096-2104.	2.6	171
57	Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents. ACS Applied Materials & Interfaces, 2019, 11, 14313-14321.	4.0	83
58	Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chemistry, 2019, 21, 1956-1964.	4.6	129
59	Wet-strength agent improves recyclability of dip-catalyst fabricated from gold nanoparticle-embedded bacterial cellulose and plant fibers. Cellulose, 2019, 26, 3375-3386.	2.4	12
60	Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied Catalysis B: Environmental, 2019, 248, 31-43.	10.8	126
61	Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Composites Science and Technology, 2018, 163, 133-140.	3.8	72
62	Smart cellulose/graphene composites fabricated by <i>in situ</i> chemical reduction of graphene oxide for multiple sensing applications. Journal of Materials Chemistry A, 2018, 6, 7777-7785.	5.2	118
63	High Electromagnetic Interference Shielding Effectiveness of Carbon Nanotube–Cellulose Composite Films with Layered Structures. Macromolecular Materials and Engineering, 2018, 303, 1800377.	1.7	34
64	<i>In situ</i> MnO _x /N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chemistry, 2018, 20, 3593-3603.	4.6	54
65	Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	17
66	Cellulose-Based Functional and Smart Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 45-67.	0.2	3
67	Nanocellulose-Based Functional Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 69-87.	0.2	1
68	Novel Regenerated Cellulosic Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 25-43.	0.2	2
69	Functional Polymeric Materials Based on Cellulose. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	4
70	Carbon nanotube–cellulose composite aerogels for vapour sensing. Sensors and Actuators B: Chemical, 2015, 213, 20-26.	4.0	95
71	Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials. ACS Applied Materials & Interfaces, 2015, 7, 22404-22412.	4.0	114
72	Smart Cellulose Fibers Coated with Carbon Nanotube Networks. Fibers, 2014, 2, 295-307.	1.8	59

#	Article	IF	CITATIONS
73	Cellulose fibres with carbon nanotube networks for water sensing. Journal of Materials Chemistry A, 2014, 2, 5541-5547.	5.2	60
74	Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. Journal of Materials Chemistry A, 2013, 1, 2161-2168.	5.2	108
75	Electrically conductive aerogels composed of cellulose and carbon nanotubes. Journal of Materials Chemistry A, 2013, 1, 9714.	5.2	72
76	Unique water sensors based on carbon nanotube–cellulose composites. Sensors and Actuators B: Chemical, 2013, 185, 225-230.	4.0	74
77	The removal of stickies with modified starch and chitosan—Highly cationic and hydrophobic types compared with unmodified ones. Carbohydrate Polymers, 2012, 90, 1712-1718.	5.1	12
78	Homogenous synthesis of 3-allyloxy-2-hydroxypropyl-cellulose in NaOH/urea aqueous system. Cellulose, 2012, 19, 925-932.	2.4	27
79	The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose, 2011, 18, 237-245.	2.4	83
80	Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2011, 83, 1185-1191.	5.1	83
81	Electrospinning of Celluloseâ€Based Fibers From NaOH/Urea Aqueous System. Macromolecular Materials and Engineering, 2010, 295, 695-700.	1.7	49
82	Homogenous Carboxymethylation of Cellulose in the New Alkaline Solvent LiOH/Urea Aqueous Solution. Macromolecular Symposia, 2010, 294, 125-132.	0.4	15
83	Properties and Bioapplications of Blended Cellulose and Corn Protein Films. Macromolecular Bioscience, 2009, 9, 849-856.	2.1	36
84	Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. Reactive and Functional Polymers, 2009, 69, 779-784.	2.0	64
85	Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry, 2009, 11, 177-184.	4.6	217
86	Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution. Biomacromolecules, 2009, 10, 1597-1602.	2.6	236
87	Preparation and Properties of Cellulose/Poly(vinyl alcohol) Blend Films Based on Dissolution in a Non-Toxic Solvent System. Journal of Biobased Materials and Bioenergy, 2009, 3, 199-204.	0.1	4
88	Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose, 2008, 15, 81-89.	2.4	31
89	Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose, 2008, 15, 779-787.	2.4	200
90	Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea Aqueous Solution: Structure and Properties. Advanced Materials, 2007, 19, 821-825.	11.1	338

#	Article	IF	CITATIONS
91	Structure Development in Regenerated Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions Containing Cellulose I <i>_β</i> Crystals. Journal of Biobased Materials and Bioenergy, 2007, 1, 266-273.	0.1	4