List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193693/publications.pdf Version: 2024-02-01

YHRY V KOLEN'KO

#	Article	IF	CITATIONS
1	Iron encapsulated carbon nanotube composites embedded in alumina with enhanced magnetic properties. Journal of Physics and Chemistry of Solids, 2022, 161, 110455.	1.9	2
2	Impact of nonâ€framework cation mixing on the structure and crystallization behavior of model highâ€level waste glasses. Journal of the American Ceramic Society, 2022, 105, 3967-3985.	1.9	3
3	Polar Layered Intermetallic LaCo ₂ P ₂ as a Water Oxidation Electrocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 14120-14128.	4.0	4
4	Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material. Chemistry of Materials, 2022, 34, 3323-3332.	3.2	13
5	In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS. Applied Catalysis B: Environmental, 2022, 312, 121376.	10.8	20
6	Understanding the importance of Nâ^'doping for CNT-supported Ni catalysts for CO2 methanation. Carbon, 2022, 195, 35-43.	5.4	15
7	Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics. Chemical Engineering Journal, 2022, 442, 136188.	6.6	14
8	Deep Eutectic Solvent Synthesis of Perovskite Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 23277-23284.	4.0	8
9	Atomic structure of an FeCrMoCBY metallic glass revealed by high energy x-ray diffraction. Journal of Physics Condensed Matter, 2022, 34, 285301.	0.7	2
10	As–Se Pentagonal Linkers to Induce Chirality and Polarity in Mixed-Valent Fe–Se Tetrahedral Chains Resulting in Hidden Magnetic Ordering. Journal of the American Chemical Society, 2022, 144, 11283-11295.	6.6	3
11	Pseudo-Polymorphism in Layered FeS Intercalates: A Competition between Charged and Neutral Guest Species. Chemistry of Materials, 2022, 34, 5397-5408.	3.2	4
12	Critical Review of Platinum Group Metal-Free Materials for Water Electrolysis: Transition from the Laboratory to the Market. Johnson Matthey Technology Review, 2021, 65, 207-226.	0.5	17
13	Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se2 Nanoparticles for Screen Printing Application. Nanomaterials, 2021, 11, 1148.	1.9	10
14	Silane-based coating charged with TiO2 NPs for dental implant applications. Surface and Coatings Technology, 2021, 413, 127066.	2.2	9
15	Atomic arrangements in an amorphous CoFeB ribbon extracted via an analysis of radial distribution functions. Journal of Physics Condensed Matter, 2021, 33, 395801.	0.7	8
16	Photocatalytic-Fenton Process under Simulated Solar Radiation Promoted by a Suitable Catalyst Selection. Catalysts, 2021, 11, 885.	1.6	2
17	Compositional Fluctuations Mediated by Excess Tellurium in Bismuth Antimony Telluride Nanocomposites Yield High Thermoelectric Performance. Journal of Physical Chemistry C, 2021, 125, 20184-20194.	1.5	10
18	Eco-friendly and cost-efficient inks for screen-printed fabrication of copper indium gallium diselenide photoabsorber thin films. Journal of Colloid and Interface Science, 2021, 598, 388-397.	5.0	13

#	Article	IF	CITATIONS
19	New Opportunity for Carbon‣upported Niâ€based Electrocatalysts: Gasâ€Phase CO ₂ Methanation. ChemCatChem, 2021, 13, 4770-4779.	1.8	7
20	Electrocatalysis using nanomaterials. Frontiers of Nanoscience, 2021, 18, 343-420.	0.3	2
21	Magnetic properties of γ-Fe ₂ O ₃ nanoparticles in a porous SiO ₂ shell for drug delivery. Journal of Physics Condensed Matter, 2021, 33, 065301.	0.7	2
22	Large-scale aqueous synthesis of Cu(In,Ga)Se ₂ nanoparticles for photocatalytic degradation of ciprofloxacin. Dalton Transactions, 2021, 50, 16819-16828.	1.6	2
23	Combined experimental and theoretical study of acetylene semi-hydrogenation over Pd/Al2O3. International Journal of Hydrogen Energy, 2020, 45, 1283-1296.	3.8	25
24	Synergistic Computational–Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation. ACS Catalysis, 2020, 10, 451-457.	5.5	35
25	1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Physical Chemistry Chemical Physics, 2020, 22, 23276-23285.	1.3	4
26	Discovery of Realâ€ S pace Topological Ferroelectricity in Metallic Transition Metal Phosphides. Advanced Materials, 2020, 32, e2003479.	11.1	13
27	Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science and Technology, 2020, 10, 7471-7475.	2.1	4
28	Structure of Manganese Oxide Nanoparticles Extracted via Pair Distribution Functions. Condensed Matter, 2020, 5, 19.	0.8	12
29	Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework. Microporous and Mesoporous Materials, 2020, 307, 110523.	2.2	51
30	Scalable colloidal synthesis of Bi ₂ Te _{2.7} Se _{0.3} plate-like particles give access to a high-performing n-type thermoelectric material for low temperature application. Nanoscale Advances, 2020, 2, 5699-5709.	2.2	13
31	Tuning Fe–Se Tetrahedral Frameworks by a Combination of [Fe(en) ₃] ²⁺ Cations and Cl [–] Anions. Inorganic Chemistry, 2020, 59, 13353-13363.	1.9	9
32	The role of surface properties in CO ₂ methanation over carbon-supported Ni catalysts and their promotion by Fe. Catalysis Science and Technology, 2020, 10, 7217-7225.	2.1	21
33	Coagulating and flocculating ferrihydrite: application of zinc acetate salt. Environmental Science: Water Research and Technology, 2020, 6, 2057-2064.	1.2	4
34	Enhanced magnetic properties of aluminum oxide nanopowder reinforced with carbon nanotubes. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
35	Defect Engineering for Enhancement of Thermoelectric Performance of (Zr, Hf)NiSn-Based n-type Half-Heusler Alloys. Journal of Physical Chemistry C, 2020, 124, 8584-8593.	1.5	43
36	FeP Nanocatalyst with Preferential [010] Orientation Boosts the Hydrogen Evolution Reaction in Polymer-Electrolyte Membrane Electrolyzer. Energy & Fuels, 2020, 34, 6423-6429.	2.5	21

#	Article	IF	CITATIONS
37	Over 6% Efficient Cu(In,Ga)Se ₂ Solar Cell Screen-Printed from Oxides on Fluorine-Doped Tin Oxide. ACS Applied Energy Materials, 2020, 3, 3120-3126.	2.5	13
38	Enhanced oxygen evolution catalysis by aluminium-doped cobalt phosphide through <i>in situ</i> surface area increase. Catalysis Science and Technology, 2020, 10, 2398-2406.	2.1	18
39	Selective formic acid dehydrogenation at low temperature over a RuO ₂ /COF pre-catalyst synthesized on the gram scale. Catalysis Science and Technology, 2020, 10, 1991-1995.	2.1	25
40	Facile bulk synthesis of high performance β-Zn4Sb3 for thermoelectric applications. Materials Letters, 2020, 265, 127428.	1.3	4
41	Crystallographic facet selective HER catalysis: exemplified in FeP and NiP ₂ single crystals. Chemical Science, 2020, 11, 5007-5016.	3.7	51
42	Structural properties of PbTe quantum dots revealed by high-energy x-ray diffraction. Journal of Physics Condensed Matter, 2020, 32, 485401.	0.7	7
43	Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys. Journal of Electronic Materials, 2019, 48, 6700-6709.	1.0	29
44	Spinodal decomposition in (Ti, Zr)CoSb half-Heusler: A nanostructuring route toward high efficiency thermoelectric materials. Journal of Applied Physics, 2019, 126, .	1.1	20
45	Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. ACS Omega, 2019, 4, 1931-1940.	1.6	10
46	Electrocatalytic water oxidation over AlFe ₂ B ₂ . Chemical Science, 2019, 10, 2796-2804.	3.7	52
47	Template-directed self-organization of colloidal PbTe nanocrystals into pillars, conformal coatings, and self-supported membranes. Nanoscale Advances, 2019, 1, 3049-3055.	2.2	7
48	Bimetallic Fe/Al system: An all-in-one solid-phase Fenton reagent for generation of hydroxyl radicals under oxic conditions. Science of the Total Environment, 2019, 673, 480-488.	3.9	25
49	Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale, 2019, 11, 6072-6079.	2.8	57
50	NiP ₂ : A Story of Two Divergent Polymorphic Multifunctional Materials. Chemistry of Materials, 2019, 31, 3407-3418.	3.2	52
51	Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Applied Sciences, 2019, 1, 1.	1.5	48
52	Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271, 361-377.	1.4	28
53	Superstructural Ordering in Hexagonal CulnSe ₂ Nanoparticles. Chemistry of Materials, 2019, 31, 260-267.	3.2	20

#	Article	IF	CITATIONS
55	Al-Induced In Situ Formation of Highly Active Nanostructured Water-Oxidation Electrocatalyst Based on Ni-Phosphide. ACS Catalysis, 2018, 8, 2595-2600.	5.5	67
56	Combining CXCR4-targeted and nontargeted nanoparticles for effective unassistedin vitromagnetic hyperthermia. Biointerphases, 2018, 13, 011005.	0.6	9
57	Structure–Activity Relationships for Ptâ€Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Chemistry - A European Journal, 2018, 24, 7298-7311.	1.7	83
58	Optimized Magnetodielectric Coupling on High-Temperature Polymer-Based Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 1821-1827.	1.5	9
59	Probing of Thermal Transport in 50 nm Thick PbTe Nanocrystal Films by Time-Domain Thermoreflectance. Journal of Physical Chemistry C, 2018, 122, 27127-27134.	1.5	15
60	Frontispiece: Structure–Activity Relationships for Ptâ€Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Chemistry - A European Journal, 2018, 24, .	1.7	0
61	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
62	Spin structure, magnetism, and cation distributions of NiFe 2â^'x Al x O 4 solid solutions. Journal of Magnetism and Magnetic Materials, 2017, 433, 155-161.	1.0	9
63	Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjugate Chemistry, 2017, 28, 362-370.	1.8	41
64	Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach. Nanoscale, 2017, 9, 14952-14966.	2.8	11
65	Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation. ACS Catalysis, 2017, 7, 5450-5455.	5.5	74
66	Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, 2017, 8, 2159.	1.5	48
67	Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way. Scientific Reports, 2016, 6, 26031.	1.6	18
68	Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1–T2 magnetic resonance imaging performance. Journal of Colloid and Interface Science, 2016, 472, 229-236.	5.0	22
69	Characterization of the [3Fe–4S] ^{0/1+} cluster from the D14C variant of Pyrococcus furiosus ferredoxin via combined NRVS and DFT analyses. Dalton Transactions, 2016, 45, 7215-7219.	1.6	8
70	Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. Journal of Physical Chemistry C, 2016, 120, 16537-16544.	1.5	53
71	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 31231-31238.	4.0	43

#	Article	IF	CITATIONS
73	Relevant Parameters for Magnetic Hyperthermia in Biological Applications: Agglomeration, Concentration, and Viscosity. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	9
74	GeAs: Highly Anisotropic van der Waals Thermoelectric Material. Chemistry of Materials, 2016, 28, 2776-2785.	3.2	78
75	Magnetization and stability study of a cobalt-ferrite-based ferrofluid. Journal of Magnetism and Magnetic Materials, 2016, 404, 143-147.	1.0	23
76	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2015, 54, 8188-8192.	7.2	494
77	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 2015, 127, 8306-8310.	1.6	86
78	Straightforward phase-transfer route to colloidal iron oxide nanoparticles for protein immobilization. RSC Advances, 2015, 5, 47954-47958.	1.7	6
79	Analytical Protocols for Separation and Electron Microscopy of Nanoparticles Interacting with Bacterial Cells. Analytical Chemistry, 2015, 87, 4641-4648.	3.2	27
80	NsrR from Streptomyces coelicolor Is a Nitric Oxide-sensing [4Fe-4S] Cluster Protein with a Specialized Regulatory Function. Journal of Biological Chemistry, 2015, 290, 12689-12704.	1.6	77
81	Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni ₂ P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51, 6738-6741.	2.2	149
82	Up-scaling the synthesis of Cu2O submicron particles with controlled morphologies for solar H2 evolution from water. Journal of Colloid and Interface Science, 2015, 456, 219-227.	5.0	20
83	Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites. ACS Applied Materials & Interfaces, 2015, 7, 15017-15022.	4.0	111
84	A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957.	1.5	93
85	Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 6503-6508.	5.5	98
86	Quasi-Three-Coordinate Iron and Cobalt Terphenoxide Complexes {Ar ^{<i>i</i>Pr₈} OM(μ-O)} ₂ (Ar ^{<i>i</i>Pr₈} =) Tj	ETQq0 0 (1.9) rgBT /Overl 8
87	2-Oxepinoxy Relevant to Benzene Oxidation. Inorganic Chemistry, 2015, 54, 8914-8922. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles. Journal of Colloid and Interface Science, 2015, 437, 235-243.	5.0	9
88	The M1 Phase of MoVTeNbO as a Catalyst for Olefin Metathesis and Isomerization. ChemCatChem, 2014, 6, 3338-3341.	1.8	4
89	High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329.	1.5	26
90	Microbeads and Hollow Microcapsules Obtained by Self-Assembly of Pickering Magneto-Responsive Cellulose Nanocrystals. ACS Applied Materials & amp; Interfaces, 2014, 6, 16851-16858.	4.0	57

#	Article	IF	CITATIONS
91	Large-Scale Synthesis of Colloidal Fe ₃ O ₄ Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia. Journal of Physical Chemistry C, 2014, 118, 8691-8701.	1.5	226
92	Chemical Excision of Tetrahedral FeSe ₂ Chains from the Superconductor FeSe: Synthesis, Crystal Structure, and Magnetism of Fe ₃ Se ₄ (en) ₂ . Journal of the American Chemical Society, 2013, 135, 19111-19114.	6.6	38
93	Observation of the FeCN and FeCO Vibrations in the Active Site of [NiFe] Hydrogenase by Nuclear Resonance Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 724-728.	7.2	60
94	Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol. ACS Catalysis, 2013, 3, 1103-1113.	5.5	50
95	Orientational order of self-assembled magnetic nanocrystals. Physical Review B, 2012, 85, .	1.1	5
96	A New Way of Probing Reaction Networks: Analyzing Multidimensional Parameter Space. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 161-169.	0.6	14
97	Magnetization Drop at High Temperature in Oleic Acid-Coated Magnetite Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 3307-3310.	1.2	9
98	Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals. Nanotechnology, 2012, 23, 025702.	1.3	27
99	Unusual Phase Evolution in MoVTeNb Oxide Catalysts Prepared by a Novel Acrylamide-Gelation Route. ChemCatChem, 2012, 4, 495-503.	1.8	12
100	Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid. Journal of Catalysis, 2012, 285, 48-60.	3.1	149
101	Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions. ChemCatChem, 2011, 3, 1597-1606.	1.8	45
102	Reinforcing of a Calcium Phosphate Cement with Hydroxyapatite Crystals of Various Morphologies. ACS Applied Materials & Interfaces, 2010, 2, 3276-3284.	4.0	46
103	Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. Journal of Solid State Chemistry, 2009, 182, 630-639.	1.4	24
104	Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Materials Science and Engineering C, 2009, 29, 2124-2132.	3.8	24
105	An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis. Crystal Growth and Design, 2009, 9, 466-474.	1.4	259
106	Mössbauer and magnetization studies of iron oxide nanocrystals. Hyperfine Interactions, 2008, 183, 49-53.	0.2	28
107	A Novel, Controlled, and High-Yield Solvothermal Drying Route to Nanosized Barium Titanate Powders. Journal of Physical Chemistry C, 2007, 111, 7306-7318.	1.5	66
108	The lithium extraction/insertion mechanism in Li2FeSiO4. Journal of Materials Chemistry, 2006, 16, 2266-2272.	6.7	278

#	Article	IF	CITATIONS
109	Hydrothermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide. Journal of Physical Chemistry B, 2006, 110, 4030-4038.	1.2	278
110	Direct Observation of Ferroelectricity in Quasi-Zero-Dimensional Barium Titanate Nanoparticles. Small, 2006, 2, 1427-1431.	5.2	26
111	Morphological features and ion-exchange properties of the H-form of todorokite. Doklady Chemistry, 2006, 409, 101-105.	0.2	0
112	A facile high-yield solvothermal route to tin phosphide Sn4P3. Journal of Solid State Chemistry, 2006, 179, 3756-3762.	1.4	60
113	Photocatalytic activity of sol–gel derived titania converted into nanocrystalline powders by supercritical drying. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 19-26.	2.0	57
114	Hydrothermal synthesis of one-dimensional (1D) NaxTiO2 nanostructures. Russian Chemical Bulletin, 2005, 54, 71-74.	0.4	2
115	Synthesis of hydroxyapatite by hydrolysis of α-Ca3(PO4)2. Russian Chemical Bulletin, 2005, 54, 79-86.	0.4	29
116	Structural, Textural, and Electronic Properties of a Nanosized Mesoporous ZnxTi1-xO2-xSolid Solution Prepared by a Supercritical Drying Route. Journal of Physical Chemistry B, 2005, 109, 20303-20309.	1.2	43
117	Photocatalytic properties of titania powders prepared by hydrothermal method. Applied Catalysis B: Environmental, 2004, 54, 51-58.	10.8	195
118	Reactivity of Nanocrystalline TiO2(Anatase and Rutile) Synthesized under Hydrothermal Conditions. Doklady Chemistry, 2004, 394, 36-38.	0.2	3
119	Magnetic Properties of TlCo2Se2Studied by Mössbauer Spectroscopy. Hyperfine Interactions, 2004, 156/157, 315-319.	0.2	2
120	Phase Composition of Nanocrystalline Titania Synthesized under Hydrothermal Conditions from Different Titanyl Compounds. Inorganic Materials, 2004, 40, 822-828.	0.2	16
121	Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions. Chemical Physics Letters, 2004, 388, 411-415.	1.2	82
122	Tunneling Magnetoresistance of La0.7Sr0.3MnO3 Ceramics Obtained by Complexonate Homogenization. Doklady Chemistry, 2003, 392, 246-250.	0.2	0
123	Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering C, 2003, 23, 1033-1038.	3.8	33
124	Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Materials Letters, 2003, 57, 1124-1129.	1.3	99
125	Title is missing!. Inorganic Materials, 2002, 38, 252-255.	0.2	22
126	Title is missing!. Doklady Chemistry, 2002, 385, 175-177.	0.2	9

#	Article	IF	CITATIONS
127	Synthesis of Nanostructured Iron Oxide(III) Powders by Rapid Expansion of Supercritical Fluid Solutions. Materials Research Society Symposia Proceedings, 1998, 520, 171.	0.1	6
128	Structural Properties of Nanometer‣ized Gold Nanoparticles on a Silicon Substrate. Physica Status Solidi (B): Basic Research, 0, , 2100572.	0.7	2