Yury V Kolen'ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193693/publications.pdf

Version: 2024-02-01

81743 95083 5,143 128 39 68 citations g-index h-index papers 134 134 134 8112 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oneâ€Step Synthesis of Selfâ€Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2015, 54, 8188-8192.	7.2	494
2	The lithium extraction/insertion mechanism in Li2FeSiO4. Journal of Materials Chemistry, 2006, 16, 2266-2272.	6.7	278
3	Hydrothermal Synthesis and Characterization of Nanorods of Various Titanates and Titanium Dioxide. Journal of Physical Chemistry B, 2006, 110, 4030-4038.	1.2	278
4	An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis. Crystal Growth and Design, 2009, 9, 466-474.	1.4	259
5	Large-Scale Synthesis of Colloidal Fe ₃ O ₄ Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia. Journal of Physical Chemistry C, 2014, 118, 8691-8701.	1.5	226
6	Photocatalytic properties of titania powders prepared by hydrothermal method. Applied Catalysis B: Environmental, 2004, 54, 51-58.	10.8	195
7	Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid. Journal of Catalysis, 2012, 285, 48-60.	3.1	149
8	Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni ₂ P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51, 6738-6741.	2.2	149
9	Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15017-15022.	4.0	111
10	Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Materials Letters, 2003, 57, 1124-1129.	1.3	99
11	Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 6503-6508.	5.5	98
12	A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 11947-11957.	1.5	93
13	Oneâ€Step Synthesis of Selfâ€Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 2015, 127, 8306-8310.	1.6	86
14	Structure–Activity Relationships for Ptâ€Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Chemistry - A European Journal, 2018, 24, 7298-7311.	1.7	83
15	Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions. Chemical Physics Letters, 2004, 388, 411-415.	1.2	82
16	GeAs: Highly Anisotropic van der Waals Thermoelectric Material. Chemistry of Materials, 2016, 28, 2776-2785.	3.2	78
17	NsrR from Streptomyces coelicolor Is a Nitric Oxide-sensing [4Fe-4S] Cluster Protein with a Specialized Regulatory Function. Journal of Biological Chemistry, 2015, 290, 12689-12704.	1.6	77
18	Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation. ACS Catalysis, 2017, 7, 5450-5455.	5.5	74

#	Article	IF	CITATIONS
19	Al-Induced In Situ Formation of Highly Active Nanostructured Water-Oxidation Electrocatalyst Based on Ni-Phosphide. ACS Catalysis, 2018, 8, 2595-2600.	5.5	67
20	A Novel, Controlled, and High-Yield Solvothermal Drying Route to Nanosized Barium Titanate Powders. Journal of Physical Chemistry C, 2007, 111, 7306-7318.	1.5	66
21	A facile high-yield solvothermal route to tin phosphide Sn4P3. Journal of Solid State Chemistry, 2006, 179, 3756-3762.	1.4	60
22	Observation of the FeCN and FeCO Vibrations in the Active Site of [NiFe] Hydrogenase by Nuclear Resonance Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 724-728.	7.2	60
23	Photocatalytic activity of sol–gel derived titania converted into nanocrystalline powders by supercritical drying. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 19-26.	2.0	57
24	Microbeads and Hollow Microcapsules Obtained by Self-Assembly of Pickering Magneto-Responsive Cellulose Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16851-16858.	4.0	57
25	Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale, 2019, 11, 6072-6079.	2.8	57
26	Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. Journal of Physical Chemistry C, 2016, 120, 16537-16544.	1.5	53
27	Electrocatalytic water oxidation over AlFe ₂ B ₂ . Chemical Science, 2019, 10, 2796-2804.	3.7	52
28	NiP ₂ : A Story of Two Divergent Polymorphic Multifunctional Materials. Chemistry of Materials, 2019, 31, 3407-3418.	3.2	52
29	Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework. Microporous and Mesoporous Materials, 2020, 307, 110523.	2.2	51
30	Crystallographic facet selective HER catalysis: exemplified in FeP and NiP ₂ single crystals. Chemical Science, 2020, 11, 5007-5016.	3.7	51
31	Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol. ACS Catalysis, 2013, 3, 1103-1113.	5.5	50
32	Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, 2017, 8, 2159.	1.5	48
33	Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using $M\tilde{A}\P$ ssbauer spectroscopy. SN Applied Sciences, 2019, 1, 1.	1.5	48
34	Reinforcing of a Calcium Phosphate Cement with Hydroxyapatite Crystals of Various Morphologies. ACS Applied Materials & Date (Interfaces, 2010, 2, 3276-3284.	4.0	46
35	Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions. ChemCatChem, 2011, 3, 1597-1606.	1.8	45
36	Structural, Textural, and Electronic Properties of a Nanosized Mesoporous ZnxTi1-xO2-xSolid Solution Prepared by a Supercritical Drying Route. Journal of Physical Chemistry B, 2005, 109, 20303-20309.	1.2	43

3

#	Article	IF	Citations
37	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31231-31238.	4.0	43
38	Defect Engineering for Enhancement of Thermoelectric Performance of (Zr, Hf)NiSn-Based n-type Half-Heusler Alloys. Journal of Physical Chemistry C, 2020, 124, 8584-8593.	1.5	43
39	Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjugate Chemistry, 2017, 28, 362-370.	1.8	41
40	Chemical Excision of Tetrahedral FeSe ₂ Chains from the Superconductor FeSe: Synthesis, Crystal Structure, and Magnetism of Fe ₃ Se ₄ (en) ₂ . Journal of the American Chemical Society, 2013, 135, 19111-19114.	6.6	38
41	Synergistic Computational–Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation. ACS Catalysis, 2020, 10, 451-457.	5. 5	35
42	Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering C, 2003, 23, 1033-1038.	3.8	33
43	Synthesis of hydroxyapatite by hydrolysis of α-Ca3(PO4)2. Russian Chemical Bulletin, 2005, 54, 79-86.	0.4	29
44	Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys. Journal of Electronic Materials, 2019, 48, 6700-6709.	1.0	29
45	$M\tilde{A}\P$ ssbauer and magnetization studies of iron oxide nanocrystals. Hyperfine Interactions, 2008, 183, 49-53.	0.2	28
46	Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271, 361-377.	1.4	28
47	Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals. Nanotechnology, 2012, 23, 025702.	1.3	27
48	Analytical Protocols for Separation and Electron Microscopy of Nanoparticles Interacting with Bacterial Cells. Analytical Chemistry, 2015, 87, 4641-4648.	3.2	27
49	Direct Observation of Ferroelectricity in Quasi-Zero-Dimensional Barium Titanate Nanoparticles. Small, 2006, 2, 1427-1431.	5. 2	26
50	High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329.	1.5	26
51	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
52	Bimetallic Fe/Al system: An all-in-one solid-phase Fenton reagent for generation of hydroxyl radicals under oxic conditions. Science of the Total Environment, 2019, 673, 480-488.	3.9	25
53	Combined experimental and theoretical study of acetylene semi-hydrogenation over Pd/Al2O3. International Journal of Hydrogen Energy, 2020, 45, 1283-1296.	3.8	25
54	Selective formic acid dehydrogenation at low temperature over a RuO ₂ /COF pre-catalyst synthesized on the gram scale. Catalysis Science and Technology, 2020, 10, 1991-1995.	2.1	25

#	Article	IF	CITATIONS
55	Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. Journal of Solid State Chemistry, 2009, 182, 630-639.	1.4	24
56	Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Materials Science and Engineering C, 2009, 29, 2124-2132.	3.8	24
57	Magnetization and stability study of a cobalt-ferrite-based ferrofluid. Journal of Magnetism and Magnetic Materials, 2016, 404, 143-147.	1.0	23
58	Title is missing!. Inorganic Materials, 2002, 38, 252-255.	0.2	22
59	Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1–T2 magnetic resonance imaging performance. Journal of Colloid and Interface Science, 2016, 472, 229-236.	5.0	22
60	The role of surface properties in CO ₂ methanation over carbon-supported Ni catalysts and their promotion by Fe. Catalysis Science and Technology, 2020, 10, 7217-7225.	2.1	21
61	FeP Nanocatalyst with Preferential [010] Orientation Boosts the Hydrogen Evolution Reaction in Polymer-Electrolyte Membrane Electrolyzer. Energy & Energy & 14, 6423-6429.	2.5	21
62	Up-scaling the synthesis of Cu2O submicron particles with controlled morphologies for solar H2 evolution from water. Journal of Colloid and Interface Science, 2015, 456, 219-227.	5.0	20
63	Spinodal decomposition in (Ti, Zr)CoSb half-Heusler: A nanostructuring route toward high efficiency thermoelectric materials. Journal of Applied Physics, 2019, 126, .	1.1	20
64	Superstructural Ordering in Hexagonal CuInSe ₂ Nanoparticles. Chemistry of Materials, 2019, 31, 260-267.	3.2	20
65	In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS. Applied Catalysis B: Environmental, 2022, 312, 121376.	10.8	20
66	Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way. Scientific Reports, 2016, 6, 26031.	1.6	18
67	Enhanced oxygen evolution catalysis by aluminium-doped cobalt phosphide through <i>in situ</i> surface area increase. Catalysis Science and Technology, 2020, 10, 2398-2406.	2.1	18
68	Critical Review of Platinum Group Metal-Free Materials for Water Electrolysis: Transition from the Laboratory to the Market. Johnson Matthey Technology Review, 2021, 65, 207-226.	0.5	17
69	Phase Composition of Nanocrystalline Titania Synthesized under Hydrothermal Conditions from Different Titanyl Compounds. Inorganic Materials, 2004, 40, 822-828.	0.2	16
70	Probing of Thermal Transport in 50 nm Thick PbTe Nanocrystal Films by Time-Domain Thermoreflectance. Journal of Physical Chemistry C, 2018, 122, 27127-27134.	1.5	15
71	Understanding the importance of Nâ^'doping for CNT-supported Ni catalysts for CO2 methanation. Carbon, 2022, 195, 35-43.	5.4	15
72	A New Way of Probing Reaction Networks: Analyzing Multidimensional Parameter Space. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 161-169.	0.6	14

#	Article	IF	Citations
73	Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics. Chemical Engineering Journal, 2022, 442, 136188.	6.6	14
74	Discovery of Realâ€Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. Advanced Materials, 2020, 32, e2003479.	11.1	13
75	Scalable colloidal synthesis of Bi ₂ Te _{2.7} Se _{0.3} plate-like particles give access to a high-performing n-type thermoelectric material for low temperature application. Nanoscale Advances, 2020, 2, 5699-5709.	2.2	13
76	Over 6% Efficient Cu(In,Ga)Se ₂ Solar Cell Screen-Printed from Oxides on Fluorine-Doped Tin Oxide. ACS Applied Energy Materials, 2020, 3, 3120-3126.	2.5	13
77	Eco-friendly and cost-efficient inks for screen-printed fabrication of copper indium gallium diselenide photoabsorber thin films. Journal of Colloid and Interface Science, 2021, 598, 388-397.	5.0	13
78	Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material. Chemistry of Materials, 2022, 34, 3323-3332.	3.2	13
79	Unusual Phase Evolution in MoVTeNb Oxide Catalysts Prepared by a Novel Acrylamide-Gelation Route. ChemCatChem, 2012, 4, 495-503.	1.8	12
80	Structure of Manganese Oxide Nanoparticles Extracted via Pair Distribution Functions. Condensed Matter, 2020, 5, 19.	0.8	12
81	Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach. Nanoscale, 2017, 9, 14952-14966.	2.8	11
82	Effectiveness and Safety of a Nontargeted Boost for a CXCR4-Targeted Magnetic Hyperthermia Treatment of Cancer Cells. ACS Omega, 2019, 4, 1931-1940.	1.6	10
83	Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se2 Nanoparticles for Screen Printing Application. Nanomaterials, 2021, 11, 1148.	1.9	10
84	Compositional Fluctuations Mediated by Excess Tellurium in Bismuth Antimony Telluride Nanocomposites Yield High Thermoelectric Performance. Journal of Physical Chemistry C, 2021, 125, 20184-20194.	1.5	10
85	Title is missing!. Doklady Chemistry, 2002, 385, 175-177.	0.2	9
86	Magnetization Drop at High Temperature in Oleic Acid-Coated Magnetite Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 3307-3310.	1.2	9
87	Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles. Journal of Colloid and Interface Science, 2015, 437, 235-243.	5.0	9
88	Relevant Parameters for Magnetic Hyperthermia in Biological Applications: Agglomeration, Concentration, and Viscosity. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1,2	9
89	Spin structure, magnetism, and cation distributions of NiFe $2\hat{a}^2$ Al x O 4 solid solutions. Journal of Magnetism and Magnetic Materials, 2017, 433, 155-161.	1.0	9
90	Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitromagnetic hyperthermia. Biointerphases, 2018, 13, 011005.	0.6	9

#	Article	IF	CITATIONS
91	Optimized Magnetodielectric Coupling on High-Temperature Polymer-Based Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 1821-1827.	1.5	9
92	Tuning Fe–Se Tetrahedral Frameworks by a Combination of [Fe(en) ₃] ²⁺ Cations and Cl [–] Anions. Inorganic Chemistry, 2020, 59, 13353-13363.	1.9	9
93	Silane-based coating charged with TiO2 NPs for dental implant applications. Surface and Coatings Technology, 2021, 413, 127066.	2.2	9
94	Quasi-Three-Coordinate Iron and Cobalt Terphenoxide Complexes {Ar ^{<i>ii</i>Pr₈} =) Tj	ETQq0 0 (1.9) rgBT /Overl 8
95	2-Oxepinoxy Relevant to Benzene Oxidation. Inorganic Chemistry, 2015, 54, 8914-8922. Characterization of the [3Fe–4S] ^{0/1+} cluster from the D14C variant of Pyrococcus furiosus ferredoxin via combined NRVS and DFT analyses. Dalton Transactions, 2016, 45, 7215-7219.	1.6	8
96	Atomic arrangements in an amorphous CoFeB ribbon extracted via an analysis of radial distribution functions. Journal of Physics Condensed Matter, 2021, 33, 395801.	0.7	8
97	Deep Eutectic Solvent Synthesis of Perovskite Electrocatalysts for Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23277-23284.	4.0	8
98	Template-directed self-organization of colloidal PbTe nanocrystals into pillars, conformal coatings, and self-supported membranes. Nanoscale Advances, 2019, 1, 3049-3055.	2.2	7
99	New Opportunity for Carbonâ€Supported Niâ€based Electrocatalysts: Gasâ€Phase CO ₂ Methanation. ChemCatChem, 2021, 13, 4770-4779.	1.8	7
100	Structural properties of PbTe quantum dots revealed by high-energy x-ray diffraction. Journal of Physics Condensed Matter, 2020, 32, 485401.	0.7	7
101	Synthesis of Nanostructured Iron Oxide(III) Powders by Rapid Expansion of Supercritical Fluid Solutions. Materials Research Society Symposia Proceedings, 1998, 520, 171.	0.1	6
102	Straightforward phase-transfer route to colloidal iron oxide nanoparticles for protein immobilization. RSC Advances, 2015, 5, 47954-47958.	1.7	6
103	Orientational order of self-assembled magnetic nanocrystals. Physical Review B, 2012, 85, .	1.1	5
104	The M1 Phase of MoVTeNbO as a Catalyst for Olefin Metathesis and Isomerization. ChemCatChem, 2014, 6, 3338-3341.	1.8	4
105	1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Physical Chemistry Chemical Physics, 2020, 22, 23276-23285.	1.3	4
106	Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science and Technology, 2020, 10, 7471-7475.	2.1	4
107	Coagulating and flocculating ferrihydrite: application of zinc acetate salt. Environmental Science: Water Research and Technology, 2020, 6, 2057-2064.	1.2	4
108	Facile bulk synthesis of high performance \hat{l}^2 -Zn4Sb3 for thermoelectric applications. Materials Letters, 2020, 265, 127428.	1.3	4

#	Article	IF	CITATIONS
109	Polar Layered Intermetallic LaCo ₂ P ₂ as a Water Oxidation Electrocatalyst. ACS Applied Materials & Diterfaces, 2022, 14, 14120-14128.	4.0	4
110	Pseudo-Polymorphism in Layered FeS Intercalates: A Competition between Charged and Neutral Guest Species. Chemistry of Materials, 2022, 34, 5397-5408.	3.2	4
111	Reactivity of Nanocrystalline TiO2(Anatase and Rutile) Synthesized under Hydrothermal Conditions. Doklady Chemistry, 2004, 394, 36-38.	0.2	3
112	Magnetic Nanocolloids. , 2016, , 75-129.		3
113	Enhanced magnetic properties of aluminum oxide nanopowder reinforced with carbon nanotubes. Journal of Nanoparticle Research, 2020, 22, $1.$	0.8	3
114	Impact of nonâ€framework cation mixing on the structure and crystallization behavior of model highâ€level waste glasses. Journal of the American Ceramic Society, 2022, 105, 3967-3985.	1.9	3
115	As–Se Pentagonal Linkers to Induce Chirality and Polarity in Mixed-Valent Fe–Se Tetrahedral Chains Resulting in Hidden Magnetic Ordering. Journal of the American Chemical Society, 2022, 144, 11283-11295.	6.6	3
116	Magnetic Properties of TlCo2Se2Studied by MÃ \P ssbauer Spectroscopy. Hyperfine Interactions, 2004, 156/157, 315-319.	0.2	2
117	Hydrothermal synthesis of one-dimensional (1D) NaxTiO2 nanostructures. Russian Chemical Bulletin, 2005, 54, 71-74.	0.4	2
118	Photocatalytic-Fenton Process under Simulated Solar Radiation Promoted by a Suitable Catalyst Selection. Catalysts, 2021, 11, 885.	1.6	2
119	Electrocatalysis using nanomaterials. Frontiers of Nanoscience, 2021, 18, 343-420.	0.3	2
120	Sci-fi Miners., 2019,,.		2
121	Iron encapsulated carbon nanotube composites embedded in alumina with enhanced magnetic properties. Journal of Physics and Chemistry of Solids, 2022, 161, 110455.	1.9	2
122	Magnetic properties of \hat{I}^3 -Fe ₂ O ₃ nanoparticles in a porous SiO ₂ shell for drug delivery. Journal of Physics Condensed Matter, 2021, 33, 065301.	0.7	2
123	Large-scale aqueous synthesis of Cu(In,Ga)Se ₂ nanoparticles for photocatalytic degradation of ciprofloxacin. Dalton Transactions, 2021, 50, 16819-16828.	1.6	2
124	Structural Properties of Nanometerâ€Sized Gold Nanoparticles on a Silicon Substrate. Physica Status Solidi (B): Basic Research, 0, , 2100572.	0.7	2
125	Atomic structure of an FeCrMoCBY metallic glass revealed by high energy x-ray diffraction. Journal of Physics Condensed Matter, 2022, 34, 285301.	0.7	2
126	Tunneling Magnetoresistance of La0.7Sr0.3MnO3 Ceramics Obtained by Complexonate Homogenization. Doklady Chemistry, 2003, 392, 246-250.	0.2	0

#	Article	IF	CITATIONS
127	Morphological features and ion-exchange properties of the H-form of todorokite. Doklady Chemistry, 2006, 409, 101-105.	0.2	0
128	Frontispiece: Structure–Activity Relationships for Ptâ€Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Chemistry - A European Journal, 2018, 24, .	1.7	0