
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11935097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inadequacy of Augmentation Index for Monitoring Arterial Stiffness: Comparison with Arterial Compliance and Other Hemodynamic Variables. Cardiovascular Engineering and Technology, 2022, , .	0.7	2
2	Augmentation index in the assessment of wave reflections and systolic loading. Computers in Biology and Medicine, 2019, 113, 103418.	3.9	8
3	Energetically wasteful wave reflections due to impedance mismatching in hypertension and their reversal with vasodilator: Time and frequency domain evaluations. Computers in Biology and Medicine, 2019, 104, 117-126.	3.9	3
4	Investigation into the diversity in the fractal dimensions of arterioles and venules in a microvascular network – A quantitative analysis. Microvascular Research, 2019, 125, 103882.	1,1	6
5	Myocardial oxygen balance during acute normovolemic hemodilution: A novel compartmental modeling approach. Computers in Biology and Medicine, 2019, 105, 16-26.	3.9	4
6	Interpretation of a new biomarker for the right ventricle introduced to evaluate the severity of pulmonary arterial hypertension. Pulmonary Circulation, 2019, 9, 1-3.	0.8	4
7	Aortic Pressure Estimation Using Blind Identification Approach on Single Input Multiple Output Nonlinear Wiener Systems. IEEE Transactions on Biomedical Engineering, 2018, 65, 1193-1200.	2.5	14
8	Quantitative cardiology and computer modeling analysis of heart failure in systole and in diastole. Computers in Biology and Medicine, 2018, 103, 252-261.	3.9	3
9	Arterial Flow, Pulse Pressure and Pulse Wave Velocity in Men and Women at Various Ages. Advances in Experimental Medicine and Biology, 2018, 1065, 153-168.	0.8	74
10	Arterial Wall Properties in Men and Women: Hemodynamic Analysis and Clinical Implications. Advances in Experimental Medicine and Biology, 2018, 1065, 291-306.	0.8	10
11	Cardiovascular Allometry: Analysis, Methodology, and Clinical Applications. Advances in Experimental Medicine and Biology, 2018, 1065, 207-224.	0.8	6
12	A novel compliance-pressure loop approach to quantify arterial compliance in systole and in diastole. Computers in Biology and Medicine, 2018, 99, 98-106.	3.9	6
13	Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network. Microvascular Research, 2017, 113, 40-49.	1.1	7
14	Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution. Biomedical Engineering and Computational Biology, 2017, 8, 117959721773030.	0.8	2
15	Validation of a novel nonlinear black box Wiener System model for arterial pulse transmission. Computers in Biology and Medicine, 2017, 88, 11-17.	3.9	9
16	A novel approach to modeling acute normovolemic hemodilution. Computers in Biology and Medicine, 2016, 68, 155-164.	3.9	2
17	Misinterpretation of the Determinants of Elevated Forward Wave Amplitude Inflates the Role of the Proximal Aorta. Journal of the American Heart Association, 2016, 5, .	1.6	56
18	Left Ventricle–Arterial System Interaction in Heart Failure. Clinical Medicine Insights: Cardiology, 2015, 9s1, CMC.S18742.	0.6	8

#	Article	IF	CITATIONS
19	Methods for analysis of hemodynamic and metabolic risks factors in hypertension. , 2015, , .		0
20	A comparison of mathematical models of left ventricular contractility derived from aortic blood flow velocity and acceleration: Application to the esophageal doppler monitor. Biomedical Engineering Letters, 2014, 4, 301-315.	2.1	4
21	Propagation of uncertainty and analysis of signal-to-noise in nonlinear compliance estimations of an arterial system model. , 2014, , .		0
22	Reduced-order nonlinear arterial compliance parameter estimation under vasoactive states. , 2013, , .		3
23	Rapid monitoring of brain auditory evoked potentials in spontaneous cerebral hypoxia. , 2012, , .		0
24	ECG T-Wave Monitor for Potential Early Detection and Diagnosis of Cardiac Arrhythmias. Cardiovascular Engineering (Dordrecht, Netherlands), 2010, 10, 201-206.	1.0	15
25	Pulse Pressure, Arterial Compliance and Wave Reflection Under Differential Vasoactive and Mechanical Loading. Cardiovascular Engineering (Dordrecht, Netherlands), 2010, 10, 170-175.	1.0	5
26	Cardiovascular Engineering in the First Decade of the 21st Century. Cardiovascular Engineering (Dordrecht, Netherlands), 2010, 10, 169-169.	1.0	0
27	Rapid Noninvasive Continuous Monitoring of Oxygenation in Cerebral Ischemia and Hypoxia. Cardiovascular Engineering (Dordrecht, Netherlands), 2010, 10, 213-217.	1.0	4
28	A distributed predictive arterial model for human vascular diagnostic applications. , 2010, , .		0
29	Patient vital signs monitoring using Wireless Body Area Networks. , 2010, , .		24
30	Brachial Artery Differential Characteristic Impedance: Contributions from Changes in Young's Modulus and Diameter. Cardiovascular Engineering (Dordrecht, Netherlands), 2009, 9, 11-17.	1.0	7
31	A Novel Wave Reflection Model of the Human Arterial System. Cardiovascular Engineering (Dordrecht, Netherlands), 2009, 9, 39-48.	1.0	15
32	A Noninvasive Parametric Evaluation of Stress Effects on Global Cardiovascular Function. Cardiovascular Engineering (Dordrecht, Netherlands), 2007, 7, 74-80.	1.0	28
33	Allometric Hemodynamic Analysis of Isolated Systolic Hypertension and Aging. Cardiovascular Engineering (Dordrecht, Netherlands), 2007, 7, 135-139.	1.0	10
34	Experimental Evaluation of the Elastic Determinants of Myocardial Function in vivo. Cardiovascular Engineering (Dordrecht, Netherlands), 2006, 6, 103-110.	1.0	2
35	Uncoupling of Muscle Shortening from Contractile Force in Intact Heart. Cardiovascular Engineering (Dordrecht, Netherlands), 2005, 5, 45-52.	1.0	2
36	Epicardial Coronary Capacitive Blood Flow. Cardiovascular Engineering (Dordrecht, Netherlands), 2005, 5, 119-125.	1.0	0

Јонn K-J Li

0

#	Article	IF	CITATIONS
37	Modeling of the Coronary Circulatory System. Cardiovascular Engineering (Dordrecht, Netherlands), 2005, 5, 141-150.	1.0	2
38	Cardiac Force and Muscle Shortening in Regional Ischemia: Asynchronization and Possible Uncoupling. , 2005, 2005, 5716-8.		1
39	Cardiac Parametric Variations in Post-Ischemic Myocardium. , 2004, 2004, 3639-41.		1
40	Postischemic Ventricular Function of Stunned Myocardium: A Modeling Perspective. Cardiovascular Engineering (Dordrecht, Netherlands), 2004, 4, 73-79.	1.0	3
41	Can a Single Muscle Fiber Model the Features of Myocardial Stunning?. Cardiovascular Engineering (Dordrecht, Netherlands), 2003, 3, 31-38.	1.0	1
42	Characterization of Time-Varying Properties and Regional Strains in Myocardial Ischemia. Cardiovascular Engineering (Dordrecht, Netherlands), 2003, 3, 109-116.	1.0	5
43	NIRS Monitoring of Pilots Subjected to +Gz Acceleration and G-Induced Loss of Consciousness (G-LOC). Advances in Experimental Medicine and Biology, 2003, 530, 371-379.	0.8	8
44	Correlation of NIRS Determined Cerebral Oxygenation with Severity of Pilot +Gz Acceleration Symptoms. Advances in Experimental Medicine and Biology, 2003, 530, 381-389.	0.8	5
45	Effects of partial ischaemia and volume loading on myocardial efficiency and cardiac performance in dogs. Cardiovascular Research, 2002, 55, 122-130.	1.8	10
46	Vasoactive Stimulations on Ventricular and Vascular Performances. Cardiovascular Engineering (Dordrecht, Netherlands), 2002, 2, 23-32.	1.0	3
47	Mechanical Restitution of Contractility in Stunned Myocardium of Open-Chest Dogs. Cardiovascular Engineering (Dordrecht, Netherlands), 2002, 2, 57-65.	1.0	7
48	An Analytical Expression for the Regulation of Ventricular Volume in the Normal and Diseased Heart. Cardiovascular Engineering (Dordrecht, Netherlands), 2002, 2, 37-48.	1.0	11
49	Iontophoresis: Modeling, Methodology, and Evaluation. Cardiovascular Engineering (Dordrecht,) Tj ETQq1 1 0.	784314 rgBT 1.0	/Overlock]
50	Pressure-Dependent and Frequency Domain Characteristics of the Systemic Arterial System. Cardiovascular Engineering (Dordrecht, Netherlands), 2001, 1, 21-29.	1.0	9
51	A New Nonuniform Piecewise Linear Viscoelastic Model of the Aorta with Propagation Characteristics. Cardiovascular Engineering (Dordrecht, Netherlands), 2001, 1, 37-47.	1.0	6
52	The Arterial Circulation. , 2000, , .		29
53	New Approaches to Clinical Evaluations. , 2000, , 201-256.		0

Arterial Circulation and the Heart. , 2000, , 159-199.

#	Article	IF	CITATIONS
55	Arterial Pulse Transmission Characteristics. , 2000, , 69-128.		0
56	A New Description of Arterial Function: The Compliance-Pressure Loop. Angiology, 1998, 49, 543-548.	0.8	11
57	A New Approach to the Analysis of Cardiovascular Function: Allometry. , 1998, , 13-29.		2
58	Analysis and Assessment of Cardiovascular Function. , 1998, , .		8
59	β-Adrenergic Stimulation of Reperfused Myocardium After 2-Hour Ischemia. Journal of Cardiovascular Pharmacology, 1998, 32, 535-542.	0.8	13
60	Vessel growth and collapsible pressure-area relationship. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2030-H2043.	1.5	48
61	Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy. Computers in Biology and Medicine, 1997, 27, 477-485.	3.9	20
62	Computer modeling of non-adjacent regional ischemic zones on ventricular function. Computers in Biology and Medicine, 1996, 26, 371-383.	3.9	7
63	Arterial wave propagation phenomena, ventricular work, and power dissipation. Annals of Biomedical Engineering, 1995, 23, 804-811.	1.3	19
64	Arterial Compliance and Its Pressure Dependence in Hypertension and Vasodilation. Angiology, 1994, 45, 113-117.	0.8	25
65	Feedback Effects in Heart-Arterial System Interaction. Advances in Experimental Medicine and Biology, 1993, 346, 325-333.	0.8	8
66	Left ventricular compliance pumping and arterial system wave reflection. , 1992, , .		0
67	Noninvasive technique for monitoring of left ventricular filling dynamics. , 1992, , .		0
68	Arterial compliance variation throughout the cardiac cycle. , 1992, , .		3
69	Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: Preliminary report. Cardiovascular Drugs and Therapy, 1992, 6, 589-595.	1.3	28
70	Pulsed mode constant current iontophoretic transdermal metaprolol tartrate delivery in established acute hypertensive rabbits. Journal of Controlled Release, 1991, 17, 157-162.	4.8	16
71	Concurrent compliance reduction and increased peripheral resistance in the manifestation of isolated systolic hypertension. American Journal of Cardiology, 1990, 65, 67-71.	0.7	50
72	Increased Arterial Pulse Wave Reflections and Pulsatile Energy Loss in Acute Hypertension. Angiology, 1989, 40, 730-735.	0.8	15

#	Article	IF	CITATIONS
73	Effect of propranolol on the myocardial contractility of normotensive and spontaneously hypertensive rabbits: Relationship of pharmacokinetics and pharmacodynamics. Journal of Pharmacokinetics and Pharmacodynamics, 1989, 17, 551-570.	0.6	7
74	Laminar and turbulent flow in the mammalian aorta: Reynolds number. Journal of Theoretical Biology, 1988, 135, 409-414.	0.8	14
75	Pressure pulse transmission into vascular beds. Microvascular Research, 1986, 32, 152-163.	1.1	37
76	Comparative cardiac mechanics: Laplace's law. Journal of Theoretical Biology, 1986, 118, 339-343.	0.8	34
77	Time Domain Resolution of Forward and Reflected Waves in the Aorta. IEEE Transactions on Biomedical Engineering, 1986, BME-33, 783-785.	2.5	79
78	Pulse Wave Reflections at the Aorto-Iliac Junction. Angiology, 1985, 36, 516-521.	0.8	13
79	Pressure-Derived Flow: A New Method. IEEE Transactions on Biomedical Engineering, 1983, BME-30, 244-246.	2.5	5
80	Hemodynamic significance of metabolic turn-over rate. Journal of Theoretical Biology, 1983, 103, 333-338.	0.8	13
81	Evaluation of a three point pressure method for the determination of arterial transmission characteristics. Journal of Biomechanics, 1980, 13, 1023-1029.	0.9	29
82	Mammalian hemodynamics : A new similarity principle. Journal of Theoretical Biology, 1979, 79, 485-489.	0.8	34