Vukica Srajer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11934967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure, 2021, 29, 743-754.e4.	1.6	31
2	High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures. Structural Dynamics, 2019, 6, 054701.	0.9	19
3	Watching proteins function with time-resolved x-ray crystallography. Journal Physics D: Applied Physics, 2017, 50, 373001.	1.3	46
4	Electric-field-stimulated protein mechanics. Nature, 2016, 540, 400-405.	13.7	166
5	Graphene-based microfluidics for serial crystallography. Lab on A Chip, 2016, 16, 3082-3096.	3.1	48
6	Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 2016, 352, 725-729.	6.0	348
7	Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 823-830.	0.4	29
8	<i>In situ</i> serial Laue diffraction on a microfluidic crystallization device. Journal of Applied Crystallography, 2014, 47, 1975-1982.	1.9	29
9	Signal to noise considerations for single crystal femtosecond time resolved crystallography of the Photoactive Yellow Protein. Faraday Discussions, 2014, 171, 439-455.	1.6	19
10	Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 2014, 346, 1242-1246.	6.0	418
11	Reply to 'Contradictions in X-ray structures of intermediates in the photocycle of photoactive yellow protein'. Nature Chemistry, 2014, 6, 259-260.	6.6	23
12	Time-Resolved Macromolecular Crystallography in Practice at BioCARS, Advanced Photon Source: From Data Collection to Structures of Intermediates. NATO Science for Peace and Security Series A: Chemistry and Biology, 2014, , 237-251.	0.5	1
13	Volume-conserving trans–cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nature Chemistry, 2013, 5, 212-220.	6.6	178
14	Resolution of structural heterogeneity in dynamic crystallography. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 946-959.	2.5	32
15	Functional Consequences of the Open Distal Pocket of Dehaloperoxidase-Hemoglobin Observed by Time-Resolved X-ray Crystallography. Biochemistry, 2013, 52, 7943-7950.	1.2	3
16	Protein energy landscapes determined by five-dimensional crystallography. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2534-2542.	2.5	56
17	Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 107-112.	3.3	42
18	pH Dependence of the Photoactive Yellow Protein Photocycle Investigated by Time-Resolved Crystallography. Biophysical Journal, 2012, 102, 325-332.	0.2	40

VUKICA SRAJER

#	Article	IF	CITATIONS
19	Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. Journal of Biological Inorganic Chemistry, 2012, 17, 647-662.	1.1	50
20	Five-dimensional crystallography. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 198-206.	0.3	40
21	Ligand Migration and Cavities within Scapharca Dimeric Hbl: Studies by Time-Resolved Crystallo- graphy, Xe Binding, and Computational Analysis. Structure, 2009, 17, 1494-1504.	1.6	60
22	Time-Resolved X-Ray Crystallography of Heme Proteins. Methods in Enzymology, 2008, 437, 379-395.	0.4	17
23	Time-Resolved Crystallographic Studies of the Heme Domain of the Oxygen Sensor FixL:  Structural Dynamics of Ligand Rebinding and Their Relation to Signal Transduction,. Biochemistry, 2007, 46, 4706-4715.	1.2	45
24	Allosteric action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7649-7654.	3.3	89
25	A Structural Pathway for Signaling in the E46Q Mutant of Photoactive Yellow Protein. Structure, 2005, 13, 55-63.	1.6	73
26	Protein–Ligand Interaction Probed by Time-Resolved Crystallography. , 2005, 305, 115-154.		29
27	Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11704-11709.	3.3	153
28	From The Cover: Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7145-7150.	3.3	256
29	Structural Heterogeneity of Cryotrapped Intermediates in the Bacterial Blue Light Photoreceptor, Photoactive Yellow Protein¶. Photochemistry and Photobiology, 2004, 80, 7.	1.3	26
30	Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction center. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5982-5987.	3.3	65
31	Chromophore Conformation and the Evolution of Tertiary Structural Changes in Photoactive Yellow Protein. Structure, 2004, 12, 1039-1045.	1.6	65
32	Immobilization of Scapharca HbI crystals improves data quality in time-resolved crystallographic experiments. Micron, 2004, 35, 107-108.	1.1	8
33	Protein kinetics: Structures of intermediates and reaction mechanism from time-resolved x-ray data. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4799-4804.	3.3	88
34	Structural Heterogeneity of Cryotrapped Intermediates in the Bacterial Blue Light Photoreceptor, Photoactive Yellow Protein [¶] . Photochemistry and Photobiology, 2004, 80, 7-14.	1.3	3
35	Timeâ€resolved capabilities at the advanced photon source. Synchrotron Radiation News, 2003, 16, 21-33.	0.2	1
36	Protein Conformational Relaxation and Ligand Migration in Myoglobin:  A Nanosecond to Millisecond Molecular Movie from Time-Resolved Laue X-ray Diffraction. Biochemistry, 2001, 40, 13802-13815.	1.2	329

VUKICA SRAJER

#	Article	IF	CITATIONS
37	A Molecular Movie at 1.8 Ã Resolution Displays the Photocycle of Photoactive Yellow Protein, a Eubacterial Blue-Light Receptor, from Nanoseconds to Seconds. Biochemistry, 2001, 40, 13788-13801.	1.2	190
38	Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources. Journal of Synchrotron Radiation, 2000, 7, 236-244.	1.0	30
39	Laue crystallography: coming of age. Journal of Synchrotron Radiation, 1999, 6, 891-917.	1.0	122
40	Initial Trajectory of Carbon Monoxide after Photodissociation from Myoglobin at Cryogenic Temperaturesâ€,‡. Biochemistry, 1997, 36, 12087-12100.	1.2	67
41	Structure of a Protein Photocycle Intermediate by Millisecond Time-Resolved Crystallography. Science, 1997, 275, 1471-1475.	6.0	445
42	Optical monitoring of protein crystals in timeâ€resolved xâ€ray experiments: Microspectrophotometer design and performance. Review of Scientific Instruments, 1994, 65, 1506-1511.	0.6	29