Ine Lentacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193438/publications.pdf

Version: 2024-02-01

117625 123424 4,438 65 34 61 h-index citations g-index papers 68 68 68 4832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Advanced Drug Delivery Reviews, 2014, 72, 49-64.	13.7	598
2	The dawn of mRNA vaccines: The COVID-19 case. Journal of Controlled Release, 2021, 333, 511-520.	9.9	276
3	Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved. Molecular Therapy, 2010, 18, 101-108.	8.2	275
4	Ultrasound and microbubble mediated drug delivery: Acoustic pressure as determinant for uptake via membrane pores or endocytosis. Journal of Controlled Release, 2015, 197, 20-28.	9.9	220
5	Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter, 2009, 5, 2161.	2.7	212
6	Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound in Medicine and Biology, 2020, 46, 1296-1325.	1.5	193
7	Three decades of messenger RNA vaccine development. Nano Today, 2019, 28, 100766.	11.9	177
8	Ultrasound-Responsive Polymer-Coated Microbubbles That Bind and Protect DNA. Langmuir, 2006, 22, 7273-7278.	3. 5	169
9	Comparison of Gold Nanoparticle Mediated Photoporation: Vapor Nanobubbles Outperform Direct Heating for Delivering Macromolecules in Live Cells. ACS Nano, 2014, 8, 6288-6296.	14.6	157
10	Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. Journal of Controlled Release, 2011, 152, 249-256.	9.9	151
11	The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. Langmuir, 2019, 35, 10173-10191.	3.5	140
12	Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. Journal of Controlled Release, 2008, 126, 265-273.	9.9	115
13	Crucial factors and emerging concepts in ultrasound-triggered drug delivery. Journal of Controlled Release, 2012, 164, 248-255.	9.9	114
14	Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: Restoring the immunogenicity of immunosilent mRNA. Journal of Controlled Release, 2017, 266, 287-300.	9.9	98
15	mRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells. Biomaterials, 2011, 32, 9128-9135.	11.4	97
16	The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. Journal of Controlled Release, 2014, 194, 28-36.	9.9	95
17	Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials, 2016, 83, 294-307.	11.4	89
18	Ultrasound Exposure of Lipoplex Loaded Microbubbles Facilitates Direct Cytoplasmic Entry of the Lipoplexes. Molecular Pharmaceutics, 2009, 6, 457-467.	4.6	83

#	Article	IF	Citations
19	Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening. Molecular Therapy - Nucleic Acids, 2013, 2, e73.	5.1	7 5
20	Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Molecular Therapy - Nucleic Acids, 2016, 5, e326.	5.1	75
21	Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 78-87.	3.0	69
22	The ReNAissanCe of mRNA-based cancer therapy. Expert Review of Vaccines, 2015, 14, 235-251.	4.4	65
23	Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today, 2014, 9, 743-758.	11.9	60
24	Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Advanced Drug Delivery Reviews, 2021, 176, 113900.	13.7	59
25	Wanted and unwanted properties of surface PEGylated nucleic acid nanoparticles in ocular gene transfer. Journal of Controlled Release, 2007, 122, 226-235.	9.9	57
26	Theranostic mRNA-loaded Microbubbles in the Lymphatics of Dogs: Implications for Drug Delivery. Theranostics, 2015, 5, 97-109.	10.0	55
27	mRNA in cancer immunotherapy: beyond a source of antigen. Molecular Cancer, 2021, 20, 48.	19.2	46
28	New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. Journal of Controlled Release, 2008, 132, 279-288.	9.9	45
29	Acoustical Properties of Individual Liposome-Loaded Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 2174-2185.	1.5	45
30	<i>In vitro</i> methods to study bubble-cell interactions: Fundamentals and therapeutic applications. Biomicrofluidics, 2016, 10, 011501.	2.4	45
31	Broadening the Message: A Nanovaccine Co-loaded with Messenger RNA and $\hat{l}\pm$ -GalCer Induces Antitumor Immunity through Conventional and Natural Killer T Cells. ACS Nano, 2019, 13, 1655-1669.	14.6	44
32	Elucidating the Mechanisms Behind Sonoporation with Adeno-Associated Virus-Loaded Microbubbles. Molecular Pharmaceutics, 2011, 8, 2244-2251.	4.6	38
33	Targeted Liposomeâ€Loaded Microbubbles for Cellâ€Specific Ultrasoundâ€Triggered Drug Delivery. Small, 2013, 9, 4027-4035.	10.0	38
34	Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles. Communications Physics, 2018, 1 , .	5.3	35
35	mRNA Encoding a Bispecific Single Domain Antibody Construct Protects against Influenza A Virus Infection in Mice. Molecular Therapy - Nucleic Acids, 2020, 20, 777-787.	5.1	32
36	Photoporation with Biodegradable Polydopamine Nanosensitizers Enables Safe and Efficient Delivery of mRNA in Human T Cells. Advanced Functional Materials, 2021, 31, 2102472.	14.9	31

#	Article	IF	Citations
37	Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells. Journal of Controlled Release, 2013, 169, 141-149.	9.9	28
38	Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials, 2019, 217, 119250.	11.4	27
39	Microvascular Injury and Perfusion Changes Induced by Ultrasound and Microbubbles in a Machine-Perfused Pig Liver. Ultrasound in Medicine and Biology, 2016, 42, 2676-2686.	1.5	20
40	Can Ultrasound Solve the Transport Barrier of the Neural Retina?. Pharmaceutical Research, 2008, 25, 2657-2665.	3.5	19
41	Biocompatible Lipidâ€Coated Persistent Luminescent Nanoparticles for In Vivo Imaging of Dendritic Cell Migration. Particle and Particle Systems Characterization, 2019, 36, 1900371.	2.3	16
42	Nanoparticle-sensitized photoporation enables inflammasome activation studies in targeted single cells. Nanoscale, 2021, 13, 6592-6604.	5.6	16
43	Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles. Methods in Molecular Biology, 2013, 948, 195-204.	0.9	15
44	Tumor cell killing efficiency of doxorubicin loaded microbubbles after ultrasound exposure. Journal of Controlled Release, 2010, 148, e113-e114.	9.9	14
45	Tri-modal In vivo Imaging of Pancreatic Islets Transplanted Subcutaneously in Mice. Molecular Imaging and Biology, 2018, 20, 940-951.	2.6	13
46	Choose your models wisely: How different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro. Journal of Controlled Release, 2014, 195, 138-146.	9.9	12
47	Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles. Methods in Molecular Biology, 2019, 1943, 241-251.	0.9	10
48	Challenges for labeling and longitudinal tracking of adoptively transferred autoreactive T lymphocytes in an experimental type-1 diabetes model. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 295-305.	2.0	9
49	Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 229-247.	5.0	8
50	Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB Opening. Annals of Neurosciences, 2014, 21, 22.	1.7	8
51	Ultrasound responsive doxorubicin-loaded microbubbles; towards an easy applicable drug delivery platform. Journal of Controlled Release, 2010, 148, e59-e60.	9.9	7
52	Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles. Molecular Imaging and Biology, 2017, 19, 683-693.	2.6	7
53	Longitudinal InÂVivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis. IScience, 2019, 20, 184-194.	4.1	7
54	Cytosolic delivery of gadolinium <i>via</i> photoporation enables improved <i>in vivo</i> magnetic resonance imaging of cancer cells. Biomaterials Science, 2021, 9, 4005-4018.	5.4	6

#	Article	IF	CITATIONS
55	Ultrasound assisted drug delivery. Advanced Drug Delivery Reviews, 2014, 72, 1-2.	13.7	5
56	Fluorine MR Imaging Probes Dynamic Migratory Profiles of Perfluorocarbon-Loaded Dendritic Cells After Streptozotocin-Induced Inflammation. Molecular Imaging and Biology, 2022, 24, 321-332.	2.6	5
57	Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 16-30.	4.3	4
58	Adeno-associated virus loaded microbubbles as a tool for targeted gene delivery. Journal of Controlled Release, 2010, 148, e59.	9.9	2
59	Liposome shedding from a vibrating microbubble on nanoseconds timescale. , 2013, , .		2
60	Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells. Proceedings of SPIE, 2015 , , .	0.8	2
61	Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Scientia Pharmaceutica, 2022, 90, 17.	2.0	1
62	542. Development and Characterization of Ultrasound Responsive Microbubbles for Gene Delivery. Molecular Therapy, 2006, 13, S208-S209.	8.2	0
63	Optical characterization of individual liposome-loaded microbubbles. , 2011, , .		O
64	Evaluation of doxorubicin-containing microbubbles for ultrasound-triggered delivery. , 2011, , .		0
65	Characterizing ultrasound-controlled drug release by high-speed fluorescence imaging. , 2012, , .		O