List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193374/publications.pdf Version: 2024-02-01

LOFPC FRRINC

#	Article	IF	CITATIONS
1	Gravity, magnetics and geothermal heat flow of the Antarctic lithospheric crust and mantle. Geological Society Memoir, 2023, 56, 213-229.	1.7	7
2	Antarctica 3-D crustal structure investigation by means of the Bayesian gravity inversion: the Wilkes Land case study. Geophysical Journal International, 2022, 229, 2147-2161.	2.4	6
3	Satellite magnetic anomalies with a smooth spectral transition to long wavelengths. Physics of the Earth and Planetary Interiors, 2022, 324, 106843.	1.9	0
4	Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling. Solid Earth, 2022, 13, 431-448.	2.8	3
5	Spectral consistency of satellite and airborne data: Application of an equivalent dipole layer for combining satellite and aeromagnetic data sets. Geophysics, 2022, 87, G71-G81.	2.6	3
6	Linearized Bayesian estimation of magnetization and depth to magnetic bottom from satellite data. Geophysical Journal International, 2022, 230, 1508-1533.	2.4	3
7	New magnetic anomaly map for the Red Sea reveals transtensional structures associated with rotational rifting. Scientific Reports, 2022, 12, 5757.	3.3	8
8	Greenland Geothermal Heat Flow Database and Map (Version 1). Earth System Science Data, 2022, 14, 2209-2238.	9.9	9
9	East Antarctica magnetically linked to its ancient neighbours in Gondwana. Scientific Reports, 2021, 11, 5513.	3.3	20
10	Gravity effect of Alpine slab segments based on geophysical and petrological modelling. Solid Earth, 2021, 12, 691-711.	2.8	1
11	The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers. Earth System Science Data, 2021, 13, 2165-2209.	9.9	12
12	Predicting Geothermal Heat Flow in Antarctica With a Machine Learning Approach. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021499.	3.4	33
13	Two-step Gravity Inversion Reveals Variable Architecture of African Cratons. Frontiers in Earth Science, 2021, 9, .	1.8	5
14	Global High-Resolution Magnetic Field Inversion Using Spherical Harmonic Representation of Tesseroids as Individual Sources. Geosciences (Switzerland), 2020, 10, 147.	2.2	6
15	The Lithospheric Structure of the Saharan Metacraton From 3â€Ð Integrated Geophysicalâ€₽etrological Modeling. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018747.	3.4	25
16	Sensitivity analysis of gravity gradient inversion of the Moho depth—a case example for the Amazonian Craton. Geophysical Journal International, 2020, 221, 1896-1912.	2.4	10
17	A Multiple 1D Earth Approach (M1DEA) to account for lateral viscosity variations in solutions of the sea level equation: An application for glacial isostatic adjustment by Antarctic deglaciation. Journal of Geodynamics, 2020, 135, 101695.	1.6	5
18	Geothermal Heat Flux in Antarctica: Assessing Models and Observations by Bayesian Inversion. Frontiers in Earth Science, 2020, 8, .	1.8	40

#	Article	IF	CITATIONS
19	Increased density of large low-velocity provinces recovered by seismologically constrained gravity inversion. Solid Earth, 2020, 11, 1551-1569.	2.8	0
20	A fast equivalent source method for airborne gravity gradient data. Geophysics, 2019, 84, G75-G82.	2.6	8
21	Modeling Satellite Gravity Gradient Data to Derive Density, Temperature, and Viscosity Structure of the Antarctic Lithosphere. Journal of Geophysical Research: Solid Earth, 2019, 124, 12053-12076.	3.4	25
22	A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophysical Journal International, 2019, 217, 1602-1628.	2.4	72
23	Moho Depths of Antarctica: Comparison of Seismic, Gravity, and Isostatic Results. Geochemistry, Geophysics, Geosystems, 2019, 20, 1629-1645.	2.5	39
24	Global Crustal Thickness and Velocity Structure From Geostatistical Analysis of Seismic Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 1626-1652.	3.4	86
25	Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation. Solid Earth, 2019, 10, 2073-2088.	2.8	13
26	Regional Gravity Field Model of Egypt Based on Satellite and Terrestrial Data. Pure and Applied Geophysics, 2019, 176, 767-786.	1.9	8
27	Inverse and 3D forward gravity modelling for the estimation of the crustal thickness of Egypt. Tectonophysics, 2019, 752, 52-67.	2.2	24
28	Basement characterization and crustal structure beneath the Arabia–Eurasia collision (Iran): A combined gravity and magnetic study. Tectonophysics, 2018, 731-732, 155-171.	2.2	18
29	Gravity Spectra from the Density Distribution of Earth's Uppermost 435Âkm. Surveys in Geophysics, 2018, 39, 227-244.	4.6	10
30	Earth tectonics as seen by GOCE - Enhanced satellite gravity gradient imaging. Scientific Reports, 2018, 8, 16356.	3.3	49
31	Spherical magnetic field gradients and lithospheric magnetization (Part 1) : finite difference calculation and depth sensitivity to lithospheric magnetization. Geophysical Journal International, 2018, 215, 1747-1765.	2.4	2
32	lsostasy as a tool to validate interpretations of regional geophysical datasets – application to the mid-Norwegian continental margin. Geological Society Special Publication, 2017, 447, 279-297.	1.3	5
33	Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients. Journal of Geophysical Research: Solid Earth, 2017, 122, 7388-7407.	3.4	20
34	A 3D regional crustal model of the NE Atlantic based on seismic and gravity data. Geological Society Special Publication, 2017, 447, 233-247.	1.3	19
35	A new noise reduction method for airborne gravity gradient data. Exploration Geophysics, 2016, 47, 296-301.	1.1	0
36	From crustal seismology to geodynamics – Contributions from the Rolf-Meissner-Symposium. Tectonophysics, 2016, 692, 1-2.	2.2	0

JOERG EBBING

#	Article	IF	CITATIONS
37	An isostatic study of the Karoo basin and underlying lithosphere in 3-D. Geophysical Journal International, 2016, 206, 774-791.	2.4	2
38	Geophysical-petrological modelling of the East Greenland Caledonides – Isostatic support from crust and upper mantle. Tectonophysics, 2016, 692, 44-57.	2.2	16
39	Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids. Computers and Geosciences, 2016, 96, 124-135.	4.2	23
40	Importance of far-field topographic and isostatic corrections for regional density modelling. Geophysical Journal International, 2016, 207, 274-287.	2.4	33
41	Satellite gravity gradient grids for geophysics. Scientific Reports, 2016, 6, 21050.	3.3	51
42	Mismatch of geophysical datasets in distal rifted margin studies. Terra Nova, 2016, 28, 340-347.	2.1	18
43	A regional background model for the Arabian Peninsula from modeling satellite gravity gradients and their invariants. Tectonophysics, 2016, 692, 86-94.	2.2	9
44	Glacial isostatic adjustment in the static gravity field of Fennoscandia. Journal of Geophysical Research: Solid Earth, 2015, 120, 503-518.	3.4	29
45	The East Greenland Caledonides—teleseismic signature, gravity and isostasy. Geophysical Journal International, 2015, 203, 1400-1418.	2.4	25
46	NEW DEPTH MAPS OF THE MAIN KAROO BASIN, USED TO EXPLORE THE CAPE ISOSTATIC ANOMALY, SOUTH AFRICA. South African Journal of Geology, 2015, 118, 225-248.	1.2	19
47	Magnetotelluric array data analysis from north-west Fennoscandia. Tectonophysics, 2015, 653, 1-19.	2.2	26
48	Electrical conductivity structure of north-west Fennoscandia from three-dimensional inversion of magnetotelluric data. Tectonophysics, 2015, 653, 20-32.	2.2	14
49	LITHOSPHERIC STRUCTURE OF THE WEST AND CENTRAL AFRICAN RIFT SYSTEM FROM REGIONAL THREE-DIMENSIONAL GRAVITY MODELLING. South African Journal of Geology, 2015, 118, 285-298.	1.2	14
50	Large-scale gravity anomaly in northern Norway: tectonic implications of shallow or deep source depth and a possible conjugate in northeast Greenland. Geophysical Journal International, 2015, 203, 2070-2088.	2.4	12
51	The use of gravity gradients and invariants for geophysical modelling - Example from airborne and satellite data. , 2015, , .		2
52	GOCE gravity gradient data for lithospheric modeling. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 16-30.	2.8	69
53	GEOPHYSICALLY PLUMBING THE MAIN KAROO BASIN, SOUTH AFRICA. South African Journal of Geology, 2014, 117, 275-300.	1.2	16
54	Sensitivity of GOCE Gravity Gradients to Crustal Thickness and Density Variations: Case Study for the Northeast Atlantic Region. International Association of Geodesy Symposia, 2014, , 291-298.	0.4	8

JOERG EBBING

#	Article	IF	CITATIONS
55	Crustal structure across the MÃ,re margin, mid-Norway, from wide-angle seismic and gravity data. Tectonophysics, 2014, 626, 21-40.	2.2	19
56	An integrated geophysical study of the Beattie Magnetic Anomaly, South Africa. Tectonophysics, 2014, 636, 228-243.	2.2	16
57	Avoidable Euler Errors – the use and abuse of Euler deconvolution applied to potential fields. Geophysical Prospecting, 2014, 62, 1162-1168.	1.9	85
58	Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophysical Journal International, 2013, 193, 557-584.	2.4	39
59	The deep structure of the Scandes and its relation to tectonic history and present-day topography. Tectonophysics, 2013, 602, 15-37.	2.2	54
60	Stochastic velocity inversion of seismic reflection/refraction traveltime data for rift structure of the southwest Barents Sea. Tectonophysics, 2013, 593, 135-150.	2.2	28
61	Advancements in satellite gravity gradient data for crustal studies. The Leading Edge, 2013, 32, 900-906.	0.7	30
62	Integrated geophysical modelling of a lateral transition zone in the lithospheric mantle under Norway and Sweden. Geophysical Journal International, 2013, 194, 1358-1373.	2.4	32
63	Reference frame transformation of satellite gravity gradients and topographic mass reduction. Journal of Geophysical Research: Solid Earth, 2013, 118, 759-774.	3.4	32
64	Integrated interpretation of potential field and seismic data for shale gas potential in the Karoo Basin, South Africa. , 2013, , .		0
65	Crustal structure of central Norway and Sweden from integrated modelling of teleseismic receiver functions and the gravity anomaly. Geophysical Journal International, 2012, 191, 1-11.	2.4	36
66	Comment on â€~A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution' by Getachew E. Tedla, M. van der Meijde, A. A. Nyblade and F. D. van der Meer. Geophysical Journal International, 2012, 189, 1217-1222.	2.4	20
67	Onshore–offshore potential field analysis of the MÃre–TrÃndelag Fault Complex and adjacent structures of Mid Norway. Tectonophysics, 2012, 518-521, 17-28.	2.2	22
68	Structure of the Scandes lithosphere from surface to depth. Tectonophysics, 2012, 536-537, 1-24.	2.2	51
69	Use of GOCE Satellite Gradient Gravity Data for Forward and Inverse Modeling of the NE Atlantic Margin. , 2012, , .		1
70	11892 Heterogeneous gravity data combination for geophysical exploration research: Applications for basin and petroleum system analysis in the Arabian Peninsula. Geoarabia, 2012, 17, 181-239.	1.6	0
71	Chapter 11 Structural interpretation of the Barents and Kara Seas from gravity and magnetic data. Geological Society Memoir, 2011, 35, 197-208.	1.7	4
72	3D gravity inversion constrained by stereotomography. , 2011, , .		1

3D gravity inversion constrained by stereotomography. , 2011, , . 72

#	Article	IF	CITATIONS
73	3-D density and magnetic crustal characterization of the southwestern Barents Shelf: implications for the offshore prolongation of the Norwegian Caledonides. Geophysical Journal International, 2011, 184, 1147-1166.	2.4	30
74	Joint inversion project for improved subâ \in salt and subâ \in basalt imaging. , 2011, , .		1
75	The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. Geological Society Special Publication, 2011, 357, 329-341.	1.3	46
76	Geophysical characterisation of two segments of the MÃ,re-TrÃ,ndelag Fault Complex, Mid Norway. Solid Earth, 2011, 2, 125-134.	2.8	7
77	New aeromagnetic and gravity compilations from Norway and adjacent areas: methods and applications. Petroleum Geology Conference Proceedings, 2010, 7, 559-586.	0.7	62
78	Properties and distribution of lower crustal bodies on the mid-Norwegian margin. Petroleum Geology Conference Proceedings, 2010, 7, 843-854.	0.7	21
79	New compilation of top basement and basement thickness for the Norwegian continental shelf reveals the segmentation of the passive margin system. Petroleum Geology Conference Proceedings, 2010, 7, 885-897.	0.7	22
80	On the use of global potential field models for regional interpretation of the West and Central African Rift System. Tectonophysics, 2010, 492, 25-39.	2.2	27
81	Magnetic basement study in the Barents Sea from inversion and forward modelling. Tectonophysics, 2010, 493, 153-171.	2.2	19
82	Correction to "Anatomy of the Dead Sea Transform from lithospheric to microscopic scale― Reviews of Geophysics, 2010, 48, .	23.0	1
83	Using Geophysical Methods to Characterize a Fault Zone – A Case Study from the MÃ,re-TrÃ,ndelag Fault Complex, Mid-Norway. , 2010, , .		1
84	The GRACEâ€satellite gravity and geoid fields in analysing largeâ€scale, cratonic or intracratonic basins. Geophysical Prospecting, 2009, 57, 559-571.	1.9	23
85	A discussion of structural and thermal control of magnetic anomalies on the midâ€Norwegian margin. Geophysical Prospecting, 2009, 57, 665-681.	1.9	26
86	The use of potential field data in revealing the basement structure in subâ€basaltic settings: an example from the MÃ,re margin, offshore Norway. Geophysical Prospecting, 2009, 57, 753-771.	1.9	7
87	Geophysical insights and early spreading history in the vicinity of the Jan Mayen Fracture Zone, Norwegian–Greenland Sea. Tectonophysics, 2009, 468, 185-205.	2.2	53
88	Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling. Tectonophysics, 2009, 470, 71-88.	2.2	54
89	Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Reviews of Geophysics, 2009, 47, .	23.0	56
90	New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data. Journal of Geophysical Research, 2009, 114, .	3.3	48

#	Article	IF	CITATIONS
91	Styles of extension offshore midâ€Norway and implications for mechanisms of crustal thinning at passive margins. Tectonics, 2008, 27, .	2.8	136
92	Hotspot–ridge interaction and its influence on Icelandic crust formation and dynamics. Tectonophysics, 2008, 447, 1-4.	2.2	3
93	Feasibility study of electromagnetic, gravimetric and aeromagnetic methods in sub-basaltic settings. , 2008, , .		1
94	Towards a 4D topographic view of the Norwegian sea margin. Global and Planetary Change, 2007, 58, 382-410.	3.5	25
95	An improved tectonic model for the Eocene opening of the Norwegian–Greenland Sea: Use of modern magnetic data. Marine and Petroleum Geology, 2007, 24, 53-66.	3.3	72
96	Insights into the magmatic architecture of the Oslo Graben by petrophysically constrained analysis of the gravity and magnetic field. Journal of Geophysical Research, 2007, 112, .	3.3	18
97	Insights into the lithospheric structure and tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International, 2007, 171, 1390-1403.	2.4	48
98	Integrated 3D density modelling and segmentation of the Dead Sea Transform. International Journal of Earth Sciences, 2007, 96, 289-302.	1.8	26
99	Joint Gravity and Isostatic Analysis for Basement Studies â \in ' A Novel Tool. , 2007, , .		20
100	Small-scale gravity modeling of upper crustal structures in the Araba Valley along the Dead Sea Transform. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	6
101	New gravity maps of the Eastern Alps and significance for the crustal structures. Tectonophysics, 2006, 414, 127-143.	2.2	28
102	The lithospheric density structure of the Eastern Alps. Tectonophysics, 2006, 414, 145-155.	2.2	45
103	The mid-Norwegian margin: a discussion of crustal lineaments, mafic intrusions, and remnants of the Caledonian root by 3D density modelling and structural interpretation. Journal of the Geological Society, 2006, 163, 47-59.	2.1	63
104	Basement Characterisation by Regional Isostatic Methods in the Barents Sea. , 2006, , .		3
105	Is there evidence for magmatic underplating beneath the Oslo Rift?. Terra Nova, 2005, 17, 129-134.	2.1	22
106	The Northern and Southern Scandes $\hat{a} \in $ structural differences revealed by an analysis of gravity anomalies, the geoid and regional isostasy. Tectonophysics, 2005, 411, 73-87.	2.2	42
107	The crustal structure of the Eastern Alps from a combination of 3D gravity modelling and isostatic investigations. Tectonophysics, 2004, 380, 89-104.	2.2	20
108	Inverse modelling of elastic thickness by convolution method – the eastern Alps as a case example. Earth and Planetary Science Letters, 2002, 202, 387-404.	4.4	83

#	Article	IF	CITATIONS
109	Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics, 2001, 337, 191-208.	2.2	58
110	3D gravity modelling of the Chicxulub impact structure. Planetary and Space Science, 2001, 49, 599-609.	1.7	35
111	Comparing gravity-based to seismic-derived lithosphere densities: a case study of the British Isles and surrounding areas. Geophysical Journal International, 0, , ggw483.	2.4	8
112	The deep geothermal potential of the radiogenic LÃ,vstakken Granite in western Norway. Norwegian Journal of Geology, 0, , .	0.5	1
113	Extension, hyperextension and mantle exhumation offshore Norway: a discussion based on 6 crustal transects. Norwegian Journal of Geology, 0, , .	0.5	6
114	Deep structure of the northern North Sea and southwestern Norway based on 3D density and magnetic modelling. Norwegian Journal of Geology, 0, , .	0.5	2