
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11933509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review. Journal of Cancer Survivorship, 2023, 17, 222-236.	1.5	20
2	Apathy in amyotrophic lateral sclerosis: systematic review and meta-analysis of frequency, correlates, and outcomes. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 14-23.	1.1	11
3	The impact of obesity on neuropathy outcomes for paclitaxel- and oxaliplatin-treated cancer survivors. Journal of Cancer Survivorship, 2022, 16, 223-232.	1.5	16
4	MiNDAUS partnership: a roadmap for the cure and management of motor Neurone disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 321-328.	1.1	4
5	The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis. Brain, 2022, 145, 1207-1210.	3.7	21
6	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	3.6	12
7	Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145, 1598-1609.	3.7	17
8	Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 480-493.	4.9	124
9	Neuronal Hyperexcitability and Free Radical Toxicity in Amyotrophic Lateral Sclerosis: Established and Future Targets. Pharmaceuticals, 2022, 15, 433.	1.7	6
10	Schizotypal traits across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum: pathomechanistic insights. Journal of Neurology, 2022, , 1.	1.8	0
11	Thalamic and Cerebellar Regional Involvement across the ALS–FTD Spectrum and the Effect of C9orf72. Brain Sciences, 2022, 12, 336.	1.1	6
12	Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 465-479.	4.9	130
13	Differences in nerve excitability properties across upper limb sensory and motor axons. Clinical Neurophysiology, 2022, 136, 138-149.	0.7	2
14	Development and consensus process for a clinical pathway for the assessment and management of chemotherapy-induced peripheral neuropathy. Supportive Care in Cancer, 2022, 30, 5965-5974.	1.0	2
15	Consensus for experimental design in electromyography (CEDE) project: High-density surface electromyography matrix. Journal of Electromyography and Kinesiology, 2022, 64, 102656.	0.7	22
16	A robust framework for characterising diffusion metrics of the median and ulnar nerves: Exploiting stateâ€ofâ€theâ€art tracking methods. Journal of the Peripheral Nervous System, 2022, 27, 67-83.	1.4	2
17	A Systematic Review of Caregiver Coping Strategies in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Journal of Geriatric Psychiatry and Neurology, 2022, 35, 763-777.	1.2	4
18	Electrodiagnostic findings in facial onset sensory motor neuronopathy (FOSMN). Clinical Neurophysiology, 2022, 140, 228-238.	0.7	2

#	Article	IF	CITATIONS
19	Assessing chemotherapy-induced peripheral neuropathy with patient reported outcome measures: a systematic review of measurement properties and considerations for future use. Quality of Life Research, 2022, 31, 3091-3107.	1.5	11
20	Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2021, 58, 87-95.	1.5	48
21	Neu-horizons: neuroprotection and therapeutic use of riluzole for the prevention of oxaliplatin-induced neuropathy—a randomised controlled trial. Supportive Care in Cancer, 2021, 29, 1103-1110.	1.0	12
22	Pathophysiological associations of transcallosal dysfunction in ALS. European Journal of Neurology, 2021, 28, 1172-1180.	1.7	12
23	Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 186.	4.5	79
24	TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 86-95.	0.9	174
25	Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2021, 17, 104-118.	4.9	152
26	Motor cortical excitability predicts cognitive phenotypes in amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 2172.	1.6	12
27	Neurotoxicity and ALS: Insights into Pathogenesis. , 2021, , 1-19.		0
28	Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open, 2021, 11, e041479.	0.8	33
29	Diagnostic Utility of Gold Coast Criteria in <scp>Amyotrophic Lateral Sclerosis</scp> . Annals of Neurology, 2021, 89, 979-986.	2.8	68
30	Weekly Paclitaxel-Induced Neurotoxicity in Breast Cancer: Outcomes and Dose Response. Oncologist, 2021, 26, 366-374.	1.9	12
31	Apathy is associated with parietal cortical-subcortical dysfunction in ALS. Cortex, 2021, 145, 341-349.	1.1	12
32	Neurology and clinical neurophysiology: an artificial divide. Practical Neurology, 2021, 21, 274-275.	0.5	1
33	Loss of the metabolism and sleep regulating neuronal populations expressing orexin and oxytocin in the hypothalamus in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2021, 47, 979-989.	1.8	31
34	Association of Cortical Hyperexcitability and Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Neurology, 2021, 96, e2090-e2097.	1.5	12
35	Coexisting Lewy body disease and clinical parkinsonism in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 2192-2199.	1.7	6
36	Pathophysiology and Treatment of Non-motor Dysfunction in Amyotrophic Lateral Sclerosis. CNS Drugs, 2021, 35, 483-505.	2.7	13

#	Article	IF	CITATIONS
37	Genetic analysis of GLT8D1 and ARPP21 in Australian familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2021, 101, 297.e9-297.e11.	1.5	6
38	Neural correlates of fat preference in frontotemporal dementia: translating insights from the obesity literature. Annals of Clinical and Translational Neurology, 2021, 8, 1318-1329.	1.7	4
39	Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Frontiers in Immunology, 2021, 12, 701550.	2.2	8
40	Behavioural changes predict poorer survival in amyotrophic lateral sclerosis. Brain and Cognition, 2021, 150, 105710.	0.8	17
41	Author Response: Phenotypic Variability in ALS-FTD and Effect on Survival. Neurology, 2021, 96, 1103-1104.	1.5	0
42	Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALSâ€FTD spectrum. Annals of Clinical and Translational Neurology, 2021, 8, 1576-1591.	1.7	11
43	Effect of Hemodiafiltration on the Progression of Neuropathy with Kidney Failure. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1365-1375.	2.2	10
44	Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. Journal of Electromyography and Kinesiology, 2021, 59, 102565.	0.7	29
45	Chemotherapy and peripheral neuropathy. Neurological Sciences, 2021, 42, 4109-4121.	0.9	21
46	Gold Coast diagnostic criteria: Implications for <scp>ALS</scp> diagnosis and clinical trial enrollment. Muscle and Nerve, 2021, 64, 532-537.	1.0	16
47	Review Article "Spotlight on Ultrasonography in the Diagnosis of Peripheral Nerve Disease: The Evidence to Date― International Journal of General Medicine, 2021, Volume 14, 4579-4604.	0.8	7
48	Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neuroscience Letters, 2021, 759, 136039.	1.0	24
49	Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study. Annals of Clinical and Translational Neurology, 2021, 8, 1991-1999.	1.7	18
50	Illness Cognitions in ALS: New Insights Into Clinical Management of Behavioural Symptoms. Frontiers in Neurology, 2021, 12, 740693.	1.1	2
51	Effect of racial background on motor cortical function as measured by threshold tracking transcranial magnetic stimulation. Journal of Neurophysiology, 2021, 126, 840-844.	0.9	5
52	Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clinical Neurophysiology, 2021, 132, 2568-2607.	0.7	85
53	Predictors of survival in frontotemporal lobar degeneration syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 425-433.	0.9	9
54	Problem-focused coping underlying lower caregiver burden in ALS-FTD: implications for caregiver intervention. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 434-441.	1.1	7

#	Article	IF	CITATIONS
55	Effects of mexiletine on hyperexcitability in sporadic amyotrophic lateral sclerosis: Preliminary findings from a small phase II randomized controlled trial. Muscle and Nerve, 2021, 63, 371-383.	1.0	13
56	Tackling clinical heterogeneity across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum using a transdiagnostic approach. Brain Communications, 2021, 3, fcab257.	1.5	16
57	Factors That Influence Non-Motor Impairment Across the ALS-FTD Spectrum: Impact of Phenotype, Sex, Age, Onset and Disease Stage. Frontiers in Neurology, 2021, 12, 743688.	1.1	6
58	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
59	Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia. Communications Medicine, 2021, 1, .	1.9	14
60	Multifocal motor neuropathy: controversies and priorities. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 140-148.	0.9	48
61	Measurement of axonal excitability: Consensus guidelines. Clinical Neurophysiology, 2020, 131, 308-323.	0.7	63
62	Quantification of Small Fiber Neuropathy in Chemotherapy-Treated Patients. Journal of Pain, 2020, 21, 44-58.	0.7	22
63	Early focality and spread of cortical dysfunction in amyotrophic lateral sclerosis: A regional study across the motor cortices. Clinical Neurophysiology, 2020, 131, 958-966.	0.7	22
64	Fasciculation anxiety syndrome in clinicians: FASICS. Practical Neurology, 2020, 20, 433-434.	0.5	2
65	Metabolomic insights into neurodegeneÂrative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1250-1250.	0.9	1
66	Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Scientific Reports, 2020, 10, 13741.	1.6	26
67	Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. Npj Genomic Medicine, 2020, 5, 32.	1.7	20
68	Treating adults with spinal muscular atrophy with nusinersen. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1139-1139.	0.9	1
69	ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology, 2020, 94, e1657-e1663.	1.5	39
70	Interrogating interneurone function using threshold tracking of the H reflex in healthy subjects and patients with motor neurone disease. Clinical Neurophysiology, 2020, 131, 1986-1996.	0.7	12
71	Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 2020, 53, 102438.	0.7	170
72	Interneuronal networks mediate cortical inhibition and facilitation. Clinical Neurophysiology, 2020, 131, 1000-1010.	0.7	11

#	Article	IF	CITATIONS
73	Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 162-171.	0.9	8
74	Health, wellbeing and lived experiences of adults with SMA: a scoping systematic review. Orphanet Journal of Rare Diseases, 2020, 15, 70.	1.2	32
75	Amyotrophic lateral sclerosis: a new diagnostic paradigm. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 903-904.	0.9	6
76	Regional callosal integrity and bilaterality of limb weakness in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 396-402.	1,1	13
77	The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 281-293.	1.4	48
78	Taxane-induced peripheral neuropathy: differences in patient report and objective assessment. Supportive Care in Cancer, 2020, 28, 4459-4466.	1.0	19
79	Occasional essay: Upper motor neuron syndrome in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 227-234.	0.9	26
80	A novel phenotype of hereditary spastic paraplegia type 7 associated with a compound heterozygous mutation in paraplegin. Muscle and Nerve, 2020, 62, E44-E45.	1.0	1
81	Electrophysiological and phenotypic profiles of taxane-induced neuropathy. Clinical Neurophysiology, 2020, 131, 1979-1985.	0.7	14
82	Cortical hyperexcitability evolves with disease progression in ALS. Annals of Clinical and Translational Neurology, 2020, 7, 733-741.	1.7	45
83	A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 2020, 131, 1975-1978.	0.7	268
84	Neurophysiological features of primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 11-17.	1.1	11
85	Primary lateral sclerosis: consensus diagnostic criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 373-377.	0.9	118
86	Phenotypic variability in ALS-FTD and effect on survival. Neurology, 2020, 94, e2005-e2013.	1.5	30
87	Transcranial magnetic stimulation in the cortical exploration of dementia. , 2020, , 327-343.		1
88	Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 47-57.	0.9	29
89	Regional motor cortex dysfunction in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1373-1382.	1.7	19
90	CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162.	1.6	10

#	Article	IF	CITATIONS
91	Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 2019, 15, 540-555.	4.9	159
92	Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 532-537.	1.1	22
93	Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 595-604.	1.1	63
94	Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. Journal of Electromyography and Kinesiology, 2019, 48, 128-144.	0.7	95
95	Inherited Neuropathies. Seminars in Neurology, 2019, 39, 620-639.	0.5	8
96	TDP-43 levels in the brain tissue of ALS cases with and without C9ORF72 or ATXN2 gene expansions. Neurology, 2019, 93, e1748-e1755.	1.5	20
97	Neural networks associated with body composition in frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 1707-1717.	1.7	10
98	Relative contributions of diabetes and chronic kidney disease to neuropathy development in diabetic nephropathy patients. Clinical Neurophysiology, 2019, 130, 2088-2095.	0.7	13
99	Cerebellar tract alterations in PLS and ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 281-284.	1.1	26
100	Clinical and neuroimaging investigations of language disturbance in frontotemporal dementia–motor neuron disease patients. Journal of Neurology, 2019, 266, 921-933.	1.8	14
101	Amyotrophic lateral sclerosis diagnostic index. Neurology, 2019, 92, e536-e547.	1.5	17
102	Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Annals of Clinical and Translational Neurology, 2019, 6, 486-495.	1.7	40
103	Amyotrophic lateral sclerosis: Origins traced to impaired balance between neural excitation and inhibition in the neonatal period. Muscle and Nerve, 2019, 60, 232-235.	1.0	30
104	Motor neuron disease with malignancy: Clinical and pathophysiological insights. Clinical Neurophysiology, 2019, 130, 1557-1561.	0.7	0
105	The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS. Neuroscience Letters, 2019, 699, 84-90.	1.0	17
106	Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1011-1020.	0.9	45
107	The underacknowledged PPA-ALS. Neurology, 2019, 92, e1354-e1366.	1.5	29
108	009â€Axonal excitability properties in dravet's syndrome reflect effect of loss of sodium channels. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A4.1-A4.	0.9	0

#	Article	IF	CITATIONS
109	Theme 11 Cognitive and psychological assessment and support. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 301-308.	1.1	1
110	Potassium control in chronic kidney disease: implications for neuromuscular function. Internal Medicine Journal, 2019, 49, 817-825.	0.5	15
111	Human cerebral evolution and the clinical syndrome of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 570-575.	0.9	11
112	The utility of the Total Neuropathy Score as an instrument to assess neuropathy severity in chronic kidney disease: A validation study. Clinical Neurophysiology, 2018, 129, 889-894.	0.7	14
113	Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neuroscience Letters, 2018, 674, 18-23.	1.0	34
114	Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2018, 18, 407-419.	1.4	12
115	Excitability of sensory axons in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 1472-1478.	0.7	9
116	Ectopic impulse generation in peripheral nerve hyperexcitability syndromes and amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 974-980.	0.7	15
117	Tracking small sensory nerve action potentials in human axonal excitability studies. Journal of Neuroscience Methods, 2018, 298, 45-53.	1.3	13
118	Structural and functional papez circuit integrity in amyotrophic lateral sclerosis. Brain Imaging and Behavior, 2018, 12, 1622-1630.	1.1	24
119	Progress towards therapy in motor neuron disease. Nature Reviews Neurology, 2018, 14, 65-66.	4.9	20
120	Stimulus, response and excitability – What is new?. Clinical Neurophysiology, 2018, 129, 333-334.	0.7	3
121	Oxaliplatin and neuropathy: A role for sodium channels. Clinical Neurophysiology, 2018, 129, 670-671.	0.7	6
122	Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 2018, 141, 521-534.	3.7	114
123	Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. American Journal of Pathology, 2018, 188, 1447-1456.	1.9	8
124	Physiological changes in neurodegeneration — mechanistic insights and clinical utility. Nature Reviews Neurology, 2018, 14, 259-271.	4.9	72
125	Riluzole, disease stage and survival in ALS. Lancet Neurology, The, 2018, 17, 385-386.	4.9	102
126	Effects of hemodialysis on intraneural blood flow in endâ€stage kidney disease. Muscle and Nerve, 2018, 57. 287-293.	1.0	9

#	Article	IF	CITATIONS
127	Multimodal quantitative examination of nerve function in colorectal cancer patients prior to chemotherapy. Muscle and Nerve, 2018, 57, 615-621.	1.0	2
128	Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 657-666.	0.9	4
129	Neurofascinâ€155 IGG4 Neuropathy: Pathophysiological Insights, Spectrum of Clinical Severity and Response To treatment. Muscle and Nerve, 2018, 57, 848-851.	1.0	37
130	Motor neurone disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 159, 345-357.	1.0	10
131	Frontostriatal grey matter atrophy in amyotrophic lateral sclerosis A visual rating study. Dementia E Neuropsychologia, 2018, 12, 388-393.	0.3	2
132	Utility of threshold tracking transcranial magnetic stimulation in ALS. Clinical Neurophysiology Practice, 2018, 3, 164-172.	0.6	51
133	Psychiatric disorders in <i>C9orf72</i> kindreds. Neurology, 2018, 91, e1498-e1507.	1.5	75
134	Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology, 2018, 91, e1669-e1676.	1.5	67
135	The burden of apathy for caregivers of patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 599-605.	1.1	20
136	<i>In vivo</i> evidence for reduced ion channel expression in motor axons of patients with amyotrophic lateral sclerosis. Journal of Physiology, 2018, 596, 5379-5396.	1.3	23
137	Neural correlates of changes in sexual function in frontotemporal dementia: implications for reward and physiological functioning. Journal of Neurology, 2018, 265, 2562-2572.	1.8	14
138	Cortical excitability varies across different muscles. Journal of Neurophysiology, 2018, 120, 1397-1403.	0.9	14
139	Regional thalamic MRI as a marker of widespread cortical pathology and progressive frontotemporal involvement in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1250-1258.	0.9	39
140	Fasciculation intensity and disease progression in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 2149-2154.	0.7	20
141	Comparison of crossâ€sectional areas and distalâ€proximal nerve ratios in amyotrophic lateral sclerosis. Muscle and Nerve, 2018, 58, 777-783.	1.0	27
142	Paradox of amyotrophic lateral sclerosis and energy metabolism. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1013-1014.	0.9	20
143	Anti-MAG neuropathy: Role of IgM antibodies, the paranodal junction and juxtaparanodal potassium channels. Clinical Neurophysiology, 2018, 129, 2162-2169.	0.7	15
144	Correlation between markers of peripheral nerve function and structure in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2018, 34, e3028.	1.7	25

#	Article	IF	CITATIONS
145	Primary lateral sclerosis and the amyotrophic lateral sclerosis–frontotemporal dementia spectrum. Journal of Neurology, 2018, 265, 1819-1828.	1.8	35
146	A unified model of the excitability of mouse sensory and motor axons. Journal of the Peripheral Nervous System, 2018, 23, 159-173.	1.4	9
147	Functional Biomarkers for Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1141.	1.1	23
148	Differentiating lower motor neuron syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 474-483.	0.9	93
149	Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neuroscience and Biobehavioral Reviews, 2017, 74, 126-138.	2.9	23
150	Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2017, 16, 208-216.	4.9	62
151	Natural history and the dawning of a new era for familial ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 95-96.	0.9	0
152	Prognostic factors in C9orf72 amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.2-281.	0.9	6
153	Peripheral nerve diffusion tensor imaging as a measure of disease progression in ALS. Journal of Neurology, 2017, 264, 882-890.	1.8	23
154	Dynamic muscle ultrasound identifies upper motor neuron involvement in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 404-410.	1.1	13
155	Fasciculation in amyotrophic lateral sclerosis: origin and pathophysiological relevance. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 773-779.	0.9	76
156	Neurophysiological and clinical outcomes in chemotherapy-induced neuropathy in cancer. Clinical Neurophysiology, 2017, 128, 1166-1175.	0.7	50
157	Cortical function and corticomotoneuronal adaptation in monomelic amyotrophy. Clinical Neurophysiology, 2017, 128, 1488-1495.	0.7	9
158	Optimal clinical assessment strategies for chemotherapy-induced peripheral neuropathy (CIPN): a systematic review and Delphi survey. Supportive Care in Cancer, 2017, 25, 3485-3493.	1.0	59
159	The evolution of motor cortical dysfunction in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2017, 128, 1075-1082.	0.7	34
160	The Effect of Diabetes on Cortical Function in Stroke: Implications for Poststroke Plasticity. Diabetes, 2017, 66, 1661-1670.	0.3	17
161	Some do not like it hot. Journal of Physiology, 2017, 595, 3251-3252.	1.3	2
162	The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage: Clinical, 2017, 13, 439-445.	1.4	60

#	Article	IF	Citations
163	Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology, 2017, 81, 355-368.	2.8	157
164	Cardiometabolic health and risk of amyotrophic lateral sclerosis. Muscle and Nerve, 2017, 56, 721-725.	1.0	8
165	Randomized, Controlled Trial of the Effect of Dietary Potassium Restriction on Nerve Function in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1569-1577.	2.2	53
166	Immune dysregulation in patients with carpal tunnel syndrome. Scientific Reports, 2017, 7, 8218.	1.6	16
167	Cortical influences drive amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 917-924.	0.9	152
168	Motor unit remodelling in multifocal motor neuropathy: The importance of axonal loss. Clinical Neurophysiology, 2017, 128, 2022-2028.	0.7	25
169	Genetic screening in sporadic ALS and FTD. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1042-1044.	0.9	105
170	Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics, 2017, 14, 91-106.	2.1	89
171	Energy expenditure in frontotemporal dementia: a behavioural and imaging study. Brain, 2017, 140, 171-183.	3.7	43
172	Laterality of motor cortical function measured by transcranial magnetic stimulation threshold tracking. Muscle and Nerve, 2017, 55, 424-427.	1.0	10
173	Haemodialysis alters peripheral nerve morphology in end-stage kidney disease. Clinical Neurophysiology, 2017, 128, 281-286.	0.7	15
174	Fampridine treatment and walking distance in multiple sclerosis: A randomised controlled trial. Clinical Neurophysiology, 2017, 128, 93-99.	0.7	10
175	Axonal Excitability in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2017, 14, 78-90.	2.1	43
176	Lipid Metabolism and Survival Across the Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum: Relationships to Eating Behavior and Cognition. Journal of Alzheimer's Disease, 2017, 61, 773-783.	1.2	47
177	Motor neurone disease: progress and challenges. Medical Journal of Australia, 2017, 206, 357-362.	0.8	28
178	Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 76.	2.4	27
179	Sensory and motor axons are different: implications for neurological disease. Annals of Clinical Neurophysiology, 2017, 19, 3.	0.1	5
	Dissociation of Structural and Functional Integrities of the Motor System in Amyotrophic Lateral		

#	Article	IF	CITATIONS
181	Peripheral nerve diffusion tensor imaging is reliable and reproducible. Journal of Magnetic Resonance Imaging, 2016, 43, 962-969.	1.9	46
182	Comparative study to evaluate the effects of peritoneal and hemodialysis on peripheral nerve function. Muscle and Nerve, 2016, 54, 58-64.	1.0	7
183	Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with <scp>ATXN</scp> 2 intermediate repeat expansions. Annals of Neurology, 2016, 79, 295-305.	2.8	29
184	Neuronal network disintegration: common pathways linking neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1234-1241.	0.9	106
185	Treatment approaches in motor neurone disease. Current Opinion in Neurology, 2016, 29, 581-591.	1.8	11
186	TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 2016, 366, 197-201.	0.3	10
187	In vivo evidence of reduced nodal and paranodal conductances in type 1 diabetes. Clinical Neurophysiology, 2016, 127, 1700-1706.	0.7	17
188	Advance care planning in motor neuron disease: A qualitative study of caregiver perspectives. Palliative Medicine, 2016, 30, 471-478.	1.3	40
189	Effect of fampridine on axonal excitability in multiple sclerosis. Clinical Neurophysiology, 2016, 127, 2636-2642.	0.7	10
190	Awaji criteria improves the diagnostic sensitivity in amyotrophic lateral sclerosis: A systematic review using individual patient data. Clinical Neurophysiology, 2016, 127, 2684-2691.	0.7	74
191	Motor cortical dysfunction develops in spinocerebellar ataxia type 3. Clinical Neurophysiology, 2016, 127, 3418-3424.	0.7	22
192	Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nature Reviews Neurology, 2016, 12, 651-661.	4.9	165
193	Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurology, The, 2016, 15, 1182-1194.	4.9	301
194	Diagnostic criteria in amyotrophic lateral sclerosis. Neurology, 2016, 87, 684-690.	1.5	46
195	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	9.4	494
196	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.5	76
197	Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2016, 16, 1147-1154.	1.4	22
198	Riluzole exerts transient modulating effects on cortical and axonal hyperexcitability in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 580-588.	1.1	58

#	Article	IF	CITATIONS
199	Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2016, 127, 2643-2660.	0.7	87
200	Diaphragm ultrasound in amyotrophic lateral sclerosis and other neuromuscular disorders. Clinical Neurophysiology, 2016, 127, 28-30.	0.7	11
201	Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurology, The, 2016, 15, 332-342.	4.9	120
202	Acute bulbar, neck and limb weakness with monospecific antiâ€GT1a antibody: A rare localized subtype of Guillainâ€Barré sydnrome. Muscle and Nerve, 2016, 53, 143-146.	1.0	2
203	Threshold tracking transcranial magnetic stimulation: Effects of age and gender on motor cortical function. Clinical Neurophysiology, 2016, 127, 2355-2361.	0.7	33
204	Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 389-396.	1.1	23
205	The frontotemporal dementia-motor neuron disease continuum. Lancet, The, 2016, 388, 919-931.	6.3	294
206	Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 569-569.	0.9	6
207	Syntactic comprehension deficits across the FTD-ALS continuum. Neurobiology of Aging, 2016, 41, 11-18.	1.5	24
208	Targeted assessment of lower motor neuron burden is associated with survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 184-190.	1.1	34
209	Cognitive and Behavioral Symptoms in ALSFTD. Journal of Geriatric Psychiatry and Neurology, 2016, 29, 3-10.	1.2	23
210	Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Medicine Reviews, 2016, 26, 33-42.	3.8	65
211	Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 85-92.	1.1	32
212	Pathophysiology of motor dysfunction in a childhood motor neuron disease caused by mutations in the riboflavin transporter. Clinical Neurophysiology, 2016, 127, 911-918.	0.7	22
213	Exploring the Evolution of Cortical Excitability Following Acute Stroke. Neurorehabilitation and Neural Repair, 2016, 30, 244-257.	1.4	40
214	A longer diagnostic interval is a risk for depression in amyotrophic lateral sclerosis. Palliative and Supportive Care, 2015, 13, 1019-1024.	0.6	26
215	The Evolution of Caregiver Burden inÂFrontotemporal Dementia with and without Amyotrophic Lateral Sclerosis. Journal of Alzheimer's Disease, 2015, 49, 875-885.	1.2	26
216	Flecainide in Amyotrophic Lateral Sclerosis as a Neuroprotective Strategy (FANS): A Randomized Placebo-Controlled Trial. EBioMedicine, 2015, 2, 1916-1922.	2.7	25

#	Article	IF	CITATIONS
217	Quantitative ultrasound of denervated hand muscles. Muscle and Nerve, 2015, 52, 221-230.	1.0	42
218	Terra incognita—cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia. Frontiers in Aging Neuroscience, 2015, 7, 121.	1.7	23
219	Measuring change in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1169-1170.	0.9	3
220	Axonal Ion Channel Dysfunction in <i>C9orf72</i> Familial Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 49.	4.5	35
221	Lou Gehrig and the ALS split hand. Neurology, 2015, 85, 1995-1995.	1.5	5
222	Tragic choices. Journal of Medical Ethics, 2015, 41, 950-951.	1.0	0
223	The standard of care in amyotrophic lateral sclerosis: a centralised multidisciplinary clinic encounter sets a new benchmark for a uniquely challenging neurodegenerative disorder. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 481-482.	0.9	9
224	Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?. Clinical Neurophysiology, 2015, 126, 1288-1294.	0.7	13
225	Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 973-985.	0.9	320
226	Progressive bilateral facial weakness. Practical Neurology, 2015, 15, 76-79.	0.5	5
227	Continuous subcutaneous insulin infusion preserves axonal function in type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2015, 31, 175-182.	1.7	14
228	TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain, 2015, 138, 3110-3122.	3.7	94
229	Precise correlation between structural and electrophysiological disturbances in MADSAM neuropathy. Neuromuscular Disorders, 2015, 25, 904-907.	0.3	16
230	Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurology, The, 2015, 14, 478-484.	4.9	164
231	Semantic deficits in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 46-53.	1.1	38
232	Motor neuron disease-frontotemporal dementia: a clinical continuum. Expert Review of Neurotherapeutics, 2015, 15, 509-522.	1.4	48
233	Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis. Journal of Neurology, 2015, 262, 1424-1432.	1.8	47
234	Peripheral nerve axonal excitability studies: expanding the neurophysiologist's armamentarium. Cerebellum and Ataxias, 2015, 2, 4.	1.9	9

#	Article	IF	CITATIONS
235	Development of a model to guide decision making in amyotrophic lateral sclerosis multidisciplinary care. Health Expectations, 2015, 18, 1769-1782.	1.1	31
236	FTD and ALS—translating mouse studies into clinical trials. Nature Reviews Neurology, 2015, 11, 360-366.	4.9	64
237	Palliative care in amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 347-348.	4.9	9
238	Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury. Journal of Neurophysiology, 2015, 113, 3209-3218.	0.9	23
239	Kidney–brain crosstalk in the acute and chronic setting. Nature Reviews Nephrology, 2015, 11, 707-719.	4.1	151
240	Cortical Function in Asymptomatic Carriers and Patients With <i>C9orf72</i> Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 1268.	4.5	74
241	Eating behavior in frontotemporal dementia. Neurology, 2015, 85, 1310-1317.	1.5	72
242	A unique account of ALS in China: exploring ethnic heterogeneity. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1051-1052.	0.9	6
243	Segmental motoneuronal dysfunction is a feature of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2015, 126, 828-836.	0.7	26
244	The Genetics of Spinal Muscular Atrophy: Progress and Challenges. Neurotherapeutics, 2015, 12, 290-302.	2.1	110
245	Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clinical Neurophysiology, 2015, 126, 803-809.	0.7	140
246	Cortical Dysfunction Underlies the Development of the Split-Hand in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87124.	1.1	75
247	Apraxia and Motor Dysfunction in Corticobasal Syndrome. PLoS ONE, 2014, 9, e92944.	1.1	26
248	Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum. PLoS ONE, 2014, 9, e105632.	1.1	79
249	A visual MRI atrophy rating scale for the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 226-234.	1.1	27
250	Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology, 2014, 82, 149-155.	1.5	95
251	Cortical hyperexcitability and the split-hand plus phenomenon: Pathophysiological insights in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 250-256.	1.1	27
252	Cortical excitability differences in hand muscles follow a splitâ€hand pattern in healthy controls. Muscle and Nerve, 2014, 49, 836-844.	1.0	22

#	Article	IF	CITATIONS
253	Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 481-487.	1.1	48
254	Paclitaxel-induced neuropathy: potential association of MAPT and GSK3B genotypes. BMC Cancer, 2014, 14, 993.	1.1	23
255	Systemic metabolism in frontotemporal dementia. Neurology, 2014, 83, 1812-1818.	1.5	48
256	A novel tool to detect behavioural symptoms in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 298-304.	1.1	53
257	Evidence for a causal relationship between hyperkalaemia and axonal dysfunction in end-stage kidney disease. Clinical Neurophysiology, 2014, 125, 179-185.	0.7	46
258	ALS pathophysiology: Insights from the split-hand phenomenon. Clinical Neurophysiology, 2014, 125, 186-193.	0.7	44
259	Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 39-46.	1.1	44
260	Guillain-Barre syndrome in Asia. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 907-913.	0.9	63
261	Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle and Nerve, 2014, 50, 894-899.	1.0	32
262	Quantifying disease progression in amyotrophic lateral sclerosis. Annals of Neurology, 2014, 76, 643-657.	2.8	133
263	Transynaptic Changes Evident in Peripheral Axonal Function After Acute Cerebellar Infarct. Cerebellum, 2014, 13, 669-676.	1.4	9
264	Axonal dysfunction, dysmyelination, and conduction failure in hereditary neuropathy with liability to pressure palsies. Muscle and Nerve, 2014, 49, 858-865.	1.0	14
265	Frontotemporal Dementia Associated With the <i>C9ORF72</i> Mutation. JAMA Neurology, 2014, 71, 331.	4.5	144
266	Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends in Neurosciences, 2014, 37, 433-442.	4.2	186
267	Axonal dysfunction with voltage gated potassium channel complex antibodies. Experimental Neurology, 2014, 261, 337-342.	2.0	14
268	ALS and neuromuscular disease: in search of the Holy Grail. Lancet Neurology, The, 2014, 13, 13-14.	4.9	8
269	Biomarkers and Future Targets for Development in Amyotrophic Lateral Sclerosis. Current Medicinal Chemistry, 2014, 21, 3535-3550.	1.2	9
270	Neurotoxicity and ALS: Insights into Pathogenesis 2014 1435-1456		0

#	Article	IF	CITATIONS
271	Fasciculation anxiety syndrome in clinicians. Journal of Neurology, 2013, 260, 1743-1747.	1.8	30
272	Physiology and pathophysiology of myelinated nerve fibers. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 115, 43-53.	1.0	18
273	Motor Cortex Excitability in Acute Cerebellar Infarct. Cerebellum, 2013, 12, 826-834.	1.4	16
274	Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 561-575.	1.0	34
275	Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurology, The, 2013, 12, 310-322.	4.9	454
276	Split-hand plus sign in ALS: Differential involvement of the flexor pollicis longus and intrinsic hand muscles. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 315-318.	1.1	46
277	Pathophysiological Insights Derived by Natural History and Motor Function of Spinal Muscular Atrophy. Journal of Pediatrics, 2013, 162, 155-159.	0.9	104
278	Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1161-1170.	0.9	213
279	Axonal dysfunction prior to neuropathy onset in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2013, 29, 53-59.	1.7	29
280	Longitudinal Plasticity Across the Neural Axis in Acute Stroke. Neurorehabilitation and Neural Repair, 2013, 27, 219-229.	1.4	35
281	Pathophysiological insights into ALS with C9ORF72 expansions. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 931-935.	0.9	89
282	Early saccades in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 294-301.	1.1	9
283	Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2013, 124, 410-416.	0.7	97
284	Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability. Journal of Physiology, 2013, 591, 273-286.	1.3	24
285	Apparent anticipation in SOD1 familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 452-456.	1.1	2
286	Botulinum toxin modulates cortical maladaptation in postâ€stroke spasticity. Muscle and Nerve, 2013, 48, 93-99.	1.0	21
287	Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 2013, 80, 1117-1123.	1.5	100
288	When more is needed: The utility of the frontotemporal dementia scale in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 169-171.	1.1	5

#	Article	IF	CITATIONS
289	Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain, 2013, 136, 1361-1370.	3.7	123
290	Chemotherapyâ€induced peripheral neurotoxicity: A critical analysis. Ca-A Cancer Journal for Clinicians, 2013, 63, 419-437.	157.7	547
291	Effects of Axonal Ion Channel Dysfunction on Quality of Life in Type 2 Diabetes. Diabetes Care, 2013, 36, 1272-1277.	4.3	30
292	What are the roles of carers in decision-making for amyotrophic lateral sclerosis multidisciplinary care?. Patient Preference and Adherence, 2013, 7, 171.	0.8	52
293	Effects of Hemodiafiltration and High Flux Hemodialysis on Nerve Excitability in End-Stage Kidney Disease. PLoS ONE, 2013, 8, e59055.	1.1	18

294 The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis. Journal of Clinical Neurology

#	Article	IF	CITATIONS
307	Emergence of a Predictive Clinical Biomarker for Diabetic Neuropathy. Diabetes, 2012, 61, 1346-1347.	0.3	5
308	Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2012, 123, 2460-2467.	0.7	42
309	Amyotrophic lateral sclerosis and frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 355-355.	0.9	7
310	Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS ONE, 2012, 7, e43993.	1.1	168
311	Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 102-109.	2.3	124
312	FOSMN syndrome. Neurology, 2012, 79, 73-79.	1.5	47
313	Maladaptation of cortical circuits underlies fatigue and weakness in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 414-420.	2.3	23
314	Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 2011, 7, 639-649.	4.9	503
315	Regional differences in ulnar nerve excitability may predispose to the development of entrapment neuropathy. Clinical Neurophysiology, 2011, 122, 194-198.	0.7	7
316	Purple pigments: The pathophysiology of acute porphyric neuropathy. Clinical Neurophysiology, 2011, 122, 2336-2344.	0.7	40
317	Isolated bulbar phenotype of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 283-289.	2.3	52
318	Utilizing natural activity to dissect the pathophysiology of acute oxaliplatin-induced neuropathy. Experimental Neurology, 2011, 227, 120-127.	2.0	18
319	Cortical excitability distinguishes ALS from mimic disorders. Clinical Neurophysiology, 2011, 122, 1860-1866.	0.7	122
320	Amyotrophic lateral sclerosis. Lancet, The, 2011, 377, 942-955.	6.3	2,182
321	Appearance, phenomenology and diagnostic utility of the split hand in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 2011, 1, 457-462.	1.2	12
322	Activityâ€dependent conduction failure: molecular insights. Journal of the Peripheral Nervous System, 2011, 16, 159-168.	1.4	14
323	The contribution of SK3 polymorphisms to acute oxaliplatin-induced neurotoxicity: direct or indirect effects?. Cancer Chemotherapy and Pharmacology, 2011, 67, 1189-1190.	1.1	2
324	Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxelâ€induced neuropathy. Muscle and Nerve, 2011, 43, 367-374.	1.0	69

#	Article	IF	CITATIONS
325	Clarifying variability of corticomotoneuronal function in kennedy disease. Muscle and Nerve, 2011, 44, 197-201.	1.0	6
326	Nerve compression, membrane excitability, and symptoms of carpal tunnel syndrome. Muscle and Nerve, 2011, 44, 402-409.	1.0	17
327	Modulatory Effects on Axonal Function After Intravenous Immunoglobulin Therapy in Chronic Inflammatory Demyelinating Polyneuropathy. Archives of Neurology, 2011, 68, 862.	4.9	63
328	Long-Term Neuropathy After Oxaliplatin Treatment: Challenging the Dictum of Reversibility. Oncologist, 2011, 16, 708-716.	1.9	171
329	Neuroprotection for Oxaliplatin-Induced Neurotoxicity: What Happened to Objective Assessment?. Journal of Clinical Oncology, 2011, 29, e553-e554.	0.8	8
330	Adaptation of motor function after spinal cord injury: novel insights into spinal shock. Brain, 2011, 134, 495-505.	3.7	36
331	Motor Neuron dysfunction in frontotemporal dementia. Brain, 2011, 134, 2582-2594.	3.7	271
332	Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy. Brain, 2011, 134, 3185-3197.	3.7	35
333	How common are behavioural changes in amyotrophic lateral sclerosis?. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 45-51.	2.3	165
334	Dissecting the Mechanisms Underlying Short-Interval Intracortical Inhibition Using Exercise. Cerebral Cortex, 2011, 21, 1639-1644.	1.6	30
335	Neurophysiological index as a biomarker for ALS progression: Validity of mixed effects models. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 33-38.	2.3	47
336	Dose Effects of Oxaliplatin on Persistent and Transient Na+ Conductances and the Development of Neurotoxicity. PLoS ONE, 2011, 6, e18469.	1.1	61
337	Predicting a Positive Response to Intravenous Immunoglobulin in Isolated Lower Motor Neuron Syndromes. PLoS ONE, 2011, 6, e27041.	1.1	13
338	Corticospinal tract dysfunction and development of amyotrophic lateral sclerosis following electrical injury. Muscle and Nerve, 2010, 42, 288-292.	1.0	13
339	Upregulation of persistent sodium conductances in familial ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 222-227.	0.9	86
340	The case of a 48 year-old woman with bizarre and complex delusions. Nature Reviews Neurology, 2010, 6, 175-179.	4.9	24
341	Acute, Reversible Axonal Energy Failure During Stroke-Like Episodes in MELAS. Pediatrics, 2010, 126, e734-e739.	1.0	17
342	Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. Brain, 2010, 133, 2727-2733.	3.7	29

#	Article	IF	CITATIONS
343	Corticomotoneuronal function in asymptomatic SOD-1 mutation carriers. Clinical Neurophysiology, 2010, 121, 1781-1785.	0.7	20
344	FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 639-645.	0.9	205
345	Fatigue in multiple sclerosis: Mechanisms and management. Clinical Neurophysiology, 2010, 121, 809-817.	0.7	97
346	Chemotherapy-Induced Neurotoxicity. , 2010, , 99-119.		0
347	The 10-metre gait speed as a functional biomarker in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 558-561.	2.3	18
348	Dexpramipexole, the R(+) enantiomer of pramipexole, for the potential treatment of amyotrophic lateral sclerosis. IDrugs: the Investigational Drugs Journal, 2010, 13, 911-20.	0.7	16
349	Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis. Current Molecular Medicine, 2009, 9, 255-272.	0.6	101
350	Oxaliplatin-Induced Lhermitte's Phenomenon as a Manifestation of Severe Generalized Neurotoxicity. Oncology, 2009, 77, 342-348.	0.9	21
351	Acute Abnormalities of Sensory Nerve Function Associated With Oxaliplatin-Induced Neurotoxicity. Journal of Clinical Oncology, 2009, 27, 1243-1249.	0.8	153
352	The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Research, 2009, 1273, 39-47.	1.1	67
353	Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology, The, 2009, 8, 94-109.	4.9	391
354	Conduction block and impaired axonal function in tick paralysis. Muscle and Nerve, 2009, 40, 358-362.	1.0	27
355	Threshold behaviour of human axons explored using subthreshold perturbations to membrane potential. Journal of Physiology, 2009, 587, 491-504.	1.3	27
356	Amyotrophic lateral sclerosis and the neuroprotective potential of exercise. Journal of Physiology, 2009, 587, 3759-3760.	1.3	8
357	Review: Neuromuscular Disease in the Dialysis Patient: An Update for the Nephrologist. Seminars in Dialysis, 2009, 22, 267-278.	0.7	42
358	lschaemic sensitivity of axons in carpal tunnel syndrome. Journal of the Peripheral Nervous System, 2009, 14, 190-200.	1.4	26
359	Hyperexcitability, persistent Na+ conductances and neurodegeneration in amyotrophic lateral sclerosis. Experimental Neurology, 2009, 218, 1-4.	2.0	21
360	Axonal ion channels from bench to bedside: A translational neuroscience perspective. Progress in Neurobiology, 2009, 89, 288-313.	2.8	144

#	Article	IF	CITATIONS
361	Congenital myasthenic syndromes. Journal of Clinical Neuroscience, 2009, 16, 1-11.	0.8	23
362	Guillain-Barré syndrome: An update. Journal of Clinical Neuroscience, 2009, 16, 733-741.	0.8	224
363	INSPIRATIonAL – INSPIRAtory muscle training in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 384-392.	2.3	64
364	Plasticity of lower limb motor axons after cervical cord injury. Clinical Neurophysiology, 2009, 120, 204-209.	0.7	25
365	Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain, 2009, 132, 2712-2723.	3.7	198
366	Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Experimental Neurology, 2009, 220, 177-182.	2.0	71
367	Neurological complications of chronic kidney disease. Nature Reviews Neurology, 2009, 5, 542-551.	4.9	148
368	Axonal function in a family with episodic ataxia type 2 due to a novel mutation. Journal of Neurology, 2008, 255, 750-755.	1.8	17
369	Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization. Muscle and Nerve, 2008, 37, 403-405.	1.0	6
370	Assessment of nerve excitability in toxic and metabolic neuropathies. Journal of the Peripheral Nervous System, 2008, 13, 7-26.	1.4	57
371	Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clinical Neurophysiology, 2008, 119, 1088-1096.	0.7	74
372	Paraspinal muscles and amyotrophic lateral sclerosis – Getting to the core?. Clinical Neurophysiology, 2008, 119, 1457-1458.	0.7	1
373	Changes in human sensory axonal excitability induced by an ischaemic insult. Clinical Neurophysiology, 2008, 119, 2054-2063.	0.7	21
374	Changes in axonal excitability and burst pattern behaviour in synkinesis. Journal of Clinical Neuroscience, 2008, 15, 1288-1290.	0.8	5
375	Activity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy. Brain, 2008, 131, 1209-1216.	3.7	87
376	Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain, 2008, 131, 1540-1550.	3.7	391
377	Nerve function and dysfunction in acute intermittent porphyria. Brain, 2008, 131, 2510-2519.	3.7	75
378	Pathophysiologic insights into motor axonal function in Kennedy disease. Neurology, 2007, 69, 1828-1835.	1.5	27

#	Article	IF	CITATIONS
379	Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 849-852.	0.9	97
380	The pain with platinum: Oxaliplatin and neuropathy. European Journal of Cancer, 2007, 43, 2631-2633.	1.3	19
381	Fatigue and activity dependent changes in axonal excitability in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1202-1208.	0.9	54
382	Axonal excitability properties in hemifacial spasm. Movement Disorders, 2007, 22, 1293-1298.	2.2	21
383	Uremic neuropathy: Clinical features and new pathophysiological insights. Muscle and Nerve, 2007, 35, 273-290.	1.0	173
384	Neuropathy, axonal Na+/K+ pump function and activity-dependent excitability changes in end-stage kidney disease. Clinical Neurophysiology, 2006, 117, 992-999.	0.7	38
385	Axonal excitability properties in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2006, 117, 1458-1466.	0.7	177
386	Activity-induced weakness in recessive myotonia congenita with a novel (696+1G>A) mutation. Clinical Neurophysiology, 2006, 117, 2064-2068.	0.7	10
387	Establishment of an Australian motor neurone disease registry. Medical Journal of Australia, 2006, 184, 367-368.	0.8	15
388	Chapter 17 Assessment of nerve excitability properties in peripheral nerve disease. Handbook of Clinical Neurophysiology, 2006, 7, 381-403.	0.0	13
389	Assessment of cortical excitability using threshold tracking techniques. Muscle and Nerve, 2006, 33, 477-486.	1.0	162
390	Axonal function and activity-dependent excitability changes in myotonic dystrophy. Muscle and Nerve, 2006, 33, 627-636.	1.0	29
391	Ischaemia induces paradoxical changes in axonal excitability in end-stage kidney disease. Brain, 2006, 129, 1585-1592.	3.7	26
392	Axonal changes in spinal cord injured patients distal to the site of injury. Brain, 2006, 130, 985-994.	3.7	96
393	The Pathophysiology of Oxaliplatin-Induced Neurotoxicity. Current Medicinal Chemistry, 2006, 13, 2901-2907.	1.2	38
394	Oxaliplatin and Axonal Na+ Channel Function In vivo. Clinical Cancer Research, 2006, 12, 4481-4484.	3.2	82
395	Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain, 2006, 129, 2436-2446.	3.7	284
396	Neurotoxic marine poisoning. Lancet Neurology, The, 2005, 4, 219-228.	4.9	205

#	Article	IF	CITATIONS
397	Assessment of disease progression in motor neuron disease. Lancet Neurology, The, 2005, 4, 229-238.	4.9	74
398	Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Annals of Neurology, 2005, 57, 339-348.	2.8	159
399	Excitability differences in lower-limb motor axons during and after ischemia. Muscle and Nerve, 2005, 31, 205-213.	1.0	13
400	Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle and Nerve, 2005, 32, 51-60.	1.0	194
401	Nerve Excitability Measures: Biophysical Basis and Use in the Investigation of Peripheral Nerve Disease. , 2005, , 113-129.		17
402	Riluzole: a glimmer of hope in the treatment of motor neurone disease. Medical Journal of Australia, 2005, 182, 319-320.	0.8	11
403	Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability. Brain, 2005, 128, 1841-1846.	3.7	54
404	Altered nerve excitability properties in established diabetic neuropathy. Brain, 2005, 128, 1178-1187.	3.7	114
405	Altered motor nerve excitability in end-stage kidney disease. Brain, 2005, 128, 2164-2174.	3.7	107
406	Has potassium been prematurely discarded as a contributing factor to the development of uraemic neuropathy?. Nephrology Dialysis Transplantation, 2004, 19, 1054-1057.	0.4	33
407	Differences in activity-dependent hyperpolarization in human sensory and motor axons. Journal of Physiology, 2004, 558, 341-349.	1.3	129
408	Nerve excitability properties in lower-limb motor axons: Evidence for a length-dependent gradient. Muscle and Nerve, 2004, 29, 645-655.	1.0	43
409	Cytoplasmic body myopathy masquerading as motor neuron disease. Muscle and Nerve, 2004, 30, 667-672.	1.0	4
410	Threshold electrotonus and the assessment of nerve excitability in amyotrophic lateral sclerosis. Handbook of Clinical Neurophysiology, 2004, 4, 359-366.	0.0	8
411	Motor neurone disease: a Pandora's box. Medical Journal of Australia, 2003, 178, 311-312.	0.8	21
412	Impulse Conduction. , 2003, , 639-642.		0
413	Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain, 2002, 125, 1366-1378.	3.7	122
414	Chapter 23 Pathophysiology of paraesthesiae. Supplements To Clinical Neurophysiology, 2002, 54, 156-162.	2.1	0

#	Article	IF	CITATIONS
415	Puffer fish poisoning: a potentially lifeâ€ŧhreatening condition. Medical Journal of Australia, 2002, 177, 650-653.	0.8	62
416	Evidence for axonal membrane hyperpolarization in multifocal motor neuropathy with conduction block. Brain, 2002, 125, 664-675.	3.7	169
417	Excitability of human axons. Clinical Neurophysiology, 2001, 112, 1575-1585.	0.7	384
418	Clinical evaluation of excitability measures in sensory nerve. Muscle and Nerve, 2001, 24, 883-892.	1.0	141
419	Multiple measures of axonal excitability: A new approach in clinical testing. , 2000, 23, 399-409.		412
420	Conduction block in carpal tunnel syndrome. Brain, 1999, 122, 933-941.	3.7	69
421	Temperature dependence of excitability indices of human cutaneous afferents. , 1999, 22, 51-60.		66
422	Monomelic amyotrophy: non progressive atrophy of the upper limb. Journal of Clinical Neuroscience, 1999, 6, 353-355.	0.8	9
423	Activity-dependent hyperpolarization of human motor axons produced by natural activity. Journal of Physiology, 1998, 507, 919-925.	1.3	191
424	Ischemic resistance of cutaneous afferents and motor axons in patients with amyotrophic lateral sclerosis. , 1998, 21, 1692-1700.		17
425	Paraesthesiae Induced by Prolonged high Frequency Stimulation of Human Cutaneous Afferents. Journal of Physiology, 1997, 501, 461-471.	1.3	29
426	Strength-duration properties of sensory and motor axons in carpal tunnel syndrome. , 1997, 20, 508-510.		32
427	Strength-duration properties of human peripheral nerve. Brain, 1996, 119, 439-447.	3.7	316
428	Activity-dependent changes in impulse conduction in normal human cutaneous axons. Brain, 1995, 118, 1217-1224.	3.7	31
429	Functional Characterisation of a GWAS Risk Locus Identifies <i>GPX3</i> as a Lead Candidate Gene in ALS. SSRN Electronic Journal, 0, , .	0.4	0