Judy Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11933456/publications.pdf

Version: 2024-02-01

		172207	276539
84	2,029	29	41
papers	citations	h-index	g-index
0.4	0.4	0.1	2270
84	84	84	3270
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interface Engineering for Enhanced Magnetic Vortex Pinning by 1D-BZO APCs in a Wide Angular Range. IOP Conference Series: Materials Science and Engineering, 2022, 1241, 012022.	0.3	О
2	High Tunneling Magnetoresistance in Magnetic Tunnel Junctions with Subnanometer Thick Al ₂ O ₃ Tunnel Barriers Fabricated Using Atomic Layer Deposition. ACS Applied Materials & Deposition. ACS Applied & Deposition. ACS Applied Materials & Deposition. ACS Applied & De	4.0	7
3	ZnO/graphene heterostructure nanohybrids for optoelectronics and sensors. Journal of Applied Physics, 2021, 130, .	1.1	12
4	Quantum dots/graphene nanohybrids photodetectors: progress and perspective. Nano Express, 2021, 2, 031002.	1.2	1
5	Enhancing magnetic pinning by BaZrO ₃ nanorods forming coherent interface by strain-directed Ca-doping in YBa ₂ Cu ₃ O _{7â°x} nanocomposite films. Superconductor Science and Technology, 2021, 34, 104002.	1.8	12
6	Quantum Dot/Graphene Heterostructure Nanohybrid Photodetectors. Lecture Notes in Nanoscale Science and Technology, 2021, , 215-248.	0.4	4
7	Graphene/WS ₂ Nanodisk Van der Waals Heterostructures on Plasmonic Ag Nanoparticle-Embedded Silica Metafilms for High-Performance Photodetectors. ACS Applied Nano Materials, 2020, 3, 7858-7868.	2.4	25
8	High-Performance Strain Sensors Based on Vertically Aligned Piezoelectric Zinc Oxide Nanowire Array/Graphene Nanohybrids. ACS Applied Nano Materials, 2020, 3, 6711-6718.	2.4	30
9	Switching On/Off Negative Capacitance in Ultrathin Ferroelectric/Dielectric Capacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9902-9908.	4.0	4
10	Pinning Efficiency of Artificial Pinning Centers in Superconductor Nanocomposite Films., 2020,, 29-52.		4
11	Effect of Al ₂ O ₃ Seed-Layer on the Dielectric and Electrical Properties of Ultrathin MgO Films Fabricated Using <i>In Situ</i> Atomic Layer Deposition. ACS Applied Materials & Amp; Interfaces, 2019, 11, 30368-30375.	4.0	10
12	The angular range of effective pinning by one-dimensional artificial pinning centers in BaZrO3/YBa2Cu3O7-x nanocomposite films. AIP Advances, 2019, 9, .	0.6	6
13	Inkjet Printing Multicolor Pixelated Quantum Dots on Graphene for Broadband Photodetection. ACS Applied Nano Materials, 2019, 2, 3246-3252.	2.4	21
14	Pinning Efficiency of One-Dimensional Artificial Pinning Centers in YBa ₂ Cu ₃ O _{7-x} Thin Films. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	5
15	Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection. ACS Omega, 2019, 4, 22497-22503.	1.6	10
16	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	1.9	11
17	Probing the Dielectric Properties of Ultrathin Al/Al ₂ O ₃ /Al Trilayers Fabricated Using <i>in Situ</i> Sputtering and Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2018, 10, 3112-3120.	4.0	49
18	Interface Nanojunction Engineering of Electron-Depleted Tungsten Oxide Nanoparticles for High-Performance Ultraviolet Photodetection. ACS Applied Nano Materials, 2018, 1, 394-400.	2.4	13

#	Article	IF	CITATIONS
19	Heat-Assisted Inkjet Printing of Tungsten Oxide for High-Performance Ultraviolet Photodetectors. ACS Applied Materials & Diterfaces, 2018, 10, 873-879.	4.0	37
20	Printing High-Performance Tungsten Oxide Thin Film Ultraviolet Photodetectors on ZnO Quantum Dot Textured SiO ₂ Surface. IEEE Sensors Journal, 2018, 18, 9542-9547.	2.4	15
21	Probing the Correlation of Twin Boundaries and Charge Transport of CdTe Solar Cells Using Electron Backscattering Diffraction and Conductive Atomic Force Microscopy. ACS Applied Energy Materials, 2018, 1, 3646-3653.	2.5	2
22	Disordered Bilayered V ₂ O ₅ â< <i>n</i> H ₂ O Shells Deposited on Vertically Aligned Carbon Nanofiber Arrays as Stable Highâ€Capacity Sodium Ion Battery Cathodes â< Energy Technology, 2018, 6, 2438-2449.	1.8	10
23	Detecting Electric Dipoles Interaction at the Interface of Ferroelectric and Electrolyte Using Graphene Field Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4244-4252.	4.0	16
24	Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte. Journal of Power Sources, 2017, 342, 1006-1016.	4.0	11
25	Fused Nanojunctions of Electronâ€Depleted ZnO Nanoparticles for Extraordinary Performance in Ultraviolet Detection. Advanced Materials Interfaces, 2017, 4, 1601064.	1.9	37
26	Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance. Journal of Materials Chemistry C, 2017, 5, 6427-6432.	2.7	21
27	Quantum Dots-Facilitated Printing of ZnO Nanostructure Photodetectors with Improved Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23189-23194.	4.0	13
28	Study of the Flux Pinning Landscape of YBCO Thin Films With Single and Mixed Phase Additions BaMO3 \pm 2: M = Hf, Sn, Zr and Z = Y2O3, Y211. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	31
29	Printable Transfer-Free and Wafer-Size MoS ₂ /Graphene van der Waals Heterostructures for High-Performance Photodetection. ACS Applied Materials & Entry 1017, 9, 12728-12733.	4.0	82
30	Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11016-11024.	4.0	34
31	Enhancement of Isotropic Pinning Force in YBCO Films With BaZrO3 Nanorods and Y2O 3 Nanoparticles. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	16
32	Generating mixed morphology BaZrO ₃ artificial pinning centers for strong and isotropic pinning in BaZrO ₃ ê€"Y ₂ O ₃ double-doped YBCO thin films. Superconductor Science and Technology, 2017, 30, 125011.	1.8	15
33	Using Bulk Heterojunctions and Selective Electron Trapping to Enhance the Responsivity of Perovskite–Graphene Photodetectors. Advanced Functional Materials, 2017, 27, 1704173.	7.8	79
34	Oxygen Plasma Surface Activation of Electronâ€Depleted ZnO Nanoparticle Films for Performanceâ€Enhanced Ultraviolet Photodetectors. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700176.	0.8	17
35	Interactive modeling-synthesis-characterization approach towards controllable <i>in situ</i> self-assembly of artificial pinning centers in RE-123 films. Superconductor Science and Technology, 2017, 30, 103002.	1.8	42
36	Self-Organization of lons at the Interface between Graphene and Ionic Liquid DEME-TFSI. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35437-35443.	4.0	17

#	Article	IF	CITATIONS
37	Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection. Journal of Materials Chemistry C, 2017, 5, 10087-10093.	2.7	44
38	Highâ€Performance Photodetectors Based on Effective Exciton Dissociation in Proteinâ€Adsorbed Multiwalled Carbon Nanotube Nanohybrids. Advanced Optical Materials, 2017, 5, 1600478.	3.6	10
39	Development of Combinatorial Pulsed Laser Deposition for Expedited Device Optimization in CdTe/CdS Thin-Film Solar Cells. International Journal of Optics, 2016, 2016, 1-7.	0.6	5
40	Effect ofln SituThermal Annealing on Structural, Optical, and Electrical Properties of CdS/CdTe Thin Film Solar Cells Fabricated by Pulsed Laser Deposition. Advances in Condensed Matter Physics, 2016, 2016, 1-8.	0.4	10
41	Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Applied Physics Letters, 2016, 109, .	1.5	45
42	Correlation of the plasmon-enhanced photoconductance and photovoltaic properties of core-shell Au@TiO2 network. Applied Physics Letters, 2016, 109, .	1.5	10
43	Correlation of microscopic grain evolution in postâ€CdCl ₂ annealing and performance of CdS/CdTe thinâ€film solar cells fabricated using pulsed laser deposition. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3231-3237.	0.8	1
44	Highly Stable Three Lithium Insertion in Thin V ₂ O ₅ Shells on Vertically Aligned Carbon Nanofiber Arrays for Ultrahigh apacity Lithium Ion Battery Cathodes. Advanced Materials Interfaces, 2016, 3, 1600824.	1.9	28
45	Probing effect of temperature on energy storage properties of relaxor-ferroelectric epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin film capacitors. Thin Solid Films, 2016, 616, 711-716.	0.8	10
46	Hot Exciton Relaxation and Exciton Trapping in Single-Walled Carbon Nanotube Thin Films. Journal of Physical Chemistry C, 2016, 120, 24482-24490.	1.5	10
47	Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction. Scientific Reports, 2016, 6, 28895.	1.6	31
48	Nondestructive Investigation of Heterojunction Interfacial Properties Using Two-Wavelength Raman Spectroscopy on Thin-Film CdS/CdTe Solar Cells. Applied Spectroscopy, 2016, 70, 1555-1560.	1.2	2
49	Metal-catalyst-free and controllable growth of high-quality monolayer and AB-stacked bilayer graphene on silicon dioxide. Carbon, 2016, 96, 203-211.	5.4	48
50	Effects of deposition temperature and CdCl2 annealing on the CdS thin films prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2016, 654, 333-339.	2.8	27
51	Effect of Interlayer Coupling on Ultrafast Charge Transfer from Semiconducting Molecules to Monoand Bilayer Graphene. Physical Review Applied, 2015, 4, .	1.5	19
52	Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8556-8561.	4.0	7
53	Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process. Carbon, 2015, 93, 199-206.	5.4	54
54	Direct graphene growth on (111) Cu2O templates with atomic Cu surface layer. Carbon, 2015, 95, 608-615.	5.4	7

#	Article	IF	CITATIONS
55	Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency. Scientific Reports, 2015, 5, 11328.	1.6	22
56	Probing Microscopic Strain Interplay Due to Impurity Doping and Vicinal Growth and Its Effect on Pinning Landscape in YBCO Films. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	6
57	Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale, 2015, 7, 8485-8494.	2.8	38
58	A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers. Electrochimica Acta, 2015, 178, 797-805.	2.6	17
59	Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20909-20918.	4.0	37
60	Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates. Nanoscale, 2015, 7, 18489-18497.	2.8	38
61	Anomalous capacity increase at high-rates in lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers. Journal of Power Sources, 2015, 276, 73-79.	4.0	30
62	High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers. , 2014, , .		1
63	Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb _{0.92} La _{0.08} Zr _{0.52} Ti _{0.48} O ₃ Film Thickness. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22417-22422.	4.0	65
64	Study of ArÂ+ÂO2 deposition pressures on properties of pulsed laser deposited CdTe thin films at high substrate temperature. Journal of Materials Science: Materials in Electronics, 2014, 25, 1901-1907.	1.1	7
65	Enhanced dielectric nonlinearity in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Applied Physics Letters, 2014, 104, .	1.5	20
66	Dimension effect on the performance of carbon nanotube nanobolometers. Nanotechnology, 2014, 25, 425503.	1.3	11
67	Atomic Layer Deposition of Al-Doped ZnO/Al ₂ O ₃ Double Layers on Vertically Aligned Carbon Nanofiber Arrays. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6865-6871.	4.0	23
68	Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+O2 atmosphere. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 801-806.	1.7	32
69	All-Optical Technique to Correlate Defect Structure and Carrier Transport in Transferred Graphene Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7176-7180.	4.0	9
70	A high-performance lithium-ion battery anode based on the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers. Journal of Materials Chemistry A, 2013, 1, 1055-1064.	5.2	81
71	Development of a Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards Highâ€Performance Nanohybrid Ultraviolet Photodetectors. Advanced Functional Materials, 2013, 23, 4941-4948.	7.8	84
72	Light Trapping on Plasmonic-Photonic Nanostructured Fluorine-Doped Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 11725-11730.	1.5	12

#	Article	IF	CITATIONS
73	The effects of pressure on the fabrication of CdS/CdTe thin film solar cells made via pulsed laser deposition. , $2013, \ldots$		2
74	Pulsed Laser Deposition of thin film CdTe/CdS solar cells with CdS/ZnS superlattice windows. , 2013, , .		3
75	Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors. Nano Letters, 2012, 12, 6244-6249.	4.5	76
76	Development of pulsed laser deposition for CdS/CdTe thin film solar cells. Applied Physics Letters, 2012, 101 , .	1.5	45
77	Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1565-1572.	4.0	54
78	Effects of the substrate temperature on the properties of CdTe thin films deposited by pulsed laser deposition. Surface and Coatings Technology, 2012, 213, 84-89.	2.2	27
79	Plasmonic Graphene Transparent Conductors. Advanced Materials, 2012, 24, OP71-6.	11.1	39
80	Triangular Graphene Grain Growth on Cubeâ€Textured Cu Substrates. Advanced Functional Materials, 2011, 21, 3868-3874.	7.8	31
81	Doped graphene nanohole arrays for flexible transparent conductors. Applied Physics Letters, 2011, 99,	1.5	36
82	Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices. Nanoscale Research Letters, 2010, 5, 1480-1486.	3.1	16
83	The effect of annealing on the photoconductivity of carbon nanofiber/TiO2 core-shell nanowires for use in dye-sensitized solar cells. Applied Physics Letters, 2010, 97, 043102.	1.5	9
84	Novel Dye-Sensitized Solar Cell Architecture Using TiO ₂ -Coated Vertically Aligned Carbon Nanofiber Arrays. ACS Applied Materials & Description (1988) amp; Interfaces, 2009, 1, 1645-1649.	4.0	71