R Sasikala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11931803/publications.pdf Version: 2024-02-01

DSACINALA

#	Article	IF	CITATIONS
1	Synthesis, Characterization and Recyclable Cerium Loaded CuO Nanocatalyst for the Synthesis of 1, 4- Disubstituted 1, 2, 3-Triazoles and Propargylamines. Silicon, 2018, 10, 1095-1101.	3.3	5
2	Microflowers of Pd doped ZnS for visible light photocatalytic and photoelectrochemical applications. Materials Science in Semiconductor Processing, 2018, 86, 139-145.	4.0	34
3	In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance. Journal of Materials Science, 2017, 52, 7077-7090.	3.7	51
4	In situ formation of surface sulfide species and its role in enhancing the photocatalytic and photoelectrochemical properties of wide bandgap ZrO2. Molecular Catalysis, 2017, 435, 128-134.	2.0	12
5	Effect of Indium doping on the photoelectrochemical and photocatalytic properties of zinc sulphide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 57-63.	3.5	13
6	Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Applied Catalysis A: General, 2016, 517, 91-99.	4.3	59
7	Improvement of photocatalytic activity of TiO2-WO3 nanocomposite by the anionically substituted N and S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 804-811.	4.7	11
8	Photocatalytic degradation of trypan blue and methyl orange azo dyes by cerium loaded CuO nanoparticles. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 45-53.	2.9	12
9	Photocatalytic performance of magnetically separable Fe, N co-doped TiO2-cobalt ferrite nanocomposite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 205, 40-45.	3.5	28
10	Sol–gel synthesized TiO2–CeO2 nanocomposite: an efficient photocatalyst for degradation of methyl orange under sunlight. Journal of Materials Science: Materials in Electronics, 2016, 27, 825-833.	2.2	47
11	Lanthanum loaded CuO nanoparticles: synthesis and characterization of a recyclable catalyst for the synthesis of 1,4-disubstituted 1,2,3-triazoles and propargylamines. RSC Advances, 2015, 5, 56507-56517.	3.6	46
12	The dual role of palladium in enhancing the photocatalytic activity of CdS dispersed on NaY-zeolite. Physical Chemistry Chemical Physics, 2015, 17, 6896-6904.	2.8	30
13	Photocatalytic performance of Pd decorated TiO2–CdO composite: Role of in situ formed CdS in the photocatalytic activity. International Journal of Hydrogen Energy, 2015, 40, 13431-13442.	7.1	32
14	Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 485-492.	4.7	36
15	Pd–TiO ₂ –SrIn ₂ O ₄ heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue. RSC Advances, 2014, 4, 55539-55547.	3.6	16
16	Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO ₂ –Pd. RSC Advances, 2014, 4, 13469-13476.	3.6	18
17	Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity. Separation and Purification Technology, 2014, 133, 438-442.	7.9	29
18	CdO–CdS nanocomposites with enhanced photocatalytic activity for hydrogen generation from water. International Journal of Hydrogen Energy, 2013, 38, 15012-15018.	7.1	52

R SASIKALA

#	Article	IF	CITATIONS
19	Visible light active N doped GeO2 for the photodegradation of both anionic and cationic dyes. Catalysis Communications, 2013, 40, 9-12.	3.3	17
20	Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2. Applied Surface Science, 2013, 282, 408-414.	6.1	73
21	Effects of Ti substitution on structural and magnetic properties of Zn–Mn ferrospinels. Materials Research Bulletin, 2013, 48, 1791-1795.	5.2	5
22	Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange. Applied Catalysis A: General, 2012, 443-444, 96-102.	4.3	74
23	Photochemical Hydrogen Generation Using Nitrogen-Doped TiO ₂ –Pd Nanoparticles: Facile Synthesis and Effect of Ti ³⁺ Incorporation. Journal of Physical Chemistry C, 2012, 116, 12462-12467.	3.1	105
24	Synthesis and characterization of nanocrystalline Ti-substituted Zn ferrite. Journal of Alloys and Compounds, 2011, 509, 2160-2163.	5.5	50
25	Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn–Mn ferrites. Materials Research Bulletin, 2011, 46, 447-452.	5.2	52
26	Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite. Applied Catalysis B: Environmental, 2011, 107, 333-339.	20.2	152
27	Photoelectrochemical properties of porous silicon based novel photoelectrodes. Progress in Photovoltaics: Research and Applications, 2011, 19, 266-274.	8.1	13
28	Role of support on the photocatalytic activity of titanium oxide. Applied Catalysis A: General, 2010, 390, 245-252.	4.3	49
29	Magnetic, dielectric and complex impedance spectroscopic studies of nanocrystalline Cr substituted Li-ferrite. Journal of Magnetism and Magnetic Materials, 2010, 322, 2629-2633.	2.3	41
30	Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Applied Catalysis A: General, 2010, 377, 47-54.	4.3	84
31	Effect of zinc substitution on structural and magnetic properties of copper ferrite. Journal of Alloys and Compounds, 2010, 501, 37-41.	5.5	38
32	Investigation of structural and magnetic properties of nanocrystalline manganese substituted lithium ferrites. Journal of Solid State Chemistry, 2009, 182, 3217-3221.	2.9	69
33	Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation. International Journal of Hydrogen Energy, 2009, 34, 3621-3630.	7.1	148
34	Modification of the photocatalytic properties of self doped TiO2nanoparticles for hydrogen generation using sunlight type radiation. International Journal of Hydrogen Energy, 2009, 34, 6105-6113.	7.1	57
35	Magnetic properties of Ni2+ clusters in NaY zeolite. Journal of Applied Physics, 2007, 102, 103902.	2.5	9
36	Enhanced hydrogen generation by particles during sonochemical decomposition of water. Ultrasonics Sonochemistry, 2007, 14, 153-156.	8.2	20

R Sasikala

#	Article	IF	CITATIONS
37	Study of superparamagnetic clusters in Co2+-exchanged NaY zeolite. Journal of Applied Physics, 2006, 99, 034310.	2.5	14
38	Temperature programmed reduction studies of spillover effect in Pd impregnated metal oxide catalysts. Journal of Thermal Analysis and Calorimetry, 2004, 78, 723-729.	3.6	14
39	Temperature programmed reduction studies of spillover effect in Pd impregnated metal oxide catalysts. Journal of Thermal Analysis and Calorimetry, 2004, 78, 723-729.	3.6	4
40	27Al NMR studies of Ce–Al mixed oxides: origin of 40ppm peak. Journal of Solid State Chemistry, 2002, 169, 113-117.	2.9	15
41	Temperature-programmed reduction and CO oxidation studies over Ce–Sn mixed oxides. Catalysis Letters, 2001, 71, 69-73.	2.6	119
42	Reduction behavior of Ce-Y mixed oxides. Journal of Materials Science Letters, 2001, 20, 1131-1133.	0.5	16
43	Synergistic effects during CO oxidation over mixed oxides. Study of (Fe2O3+SnO2) and (Mn2O3+SnO2) systems. Catalysis Letters, 1996, 37, 181-185.	2.6	15
44	Catalytic behaviour of FeTi for CO methanation: Effect of Fe substitution with Mn and Ni. Journal of Molecular Catalysis, 1991, 67, 259-266.	1.2	3
45	Carbon monoxide methanation over FeTi1-x Sn x intermetallics: Role of second phase. Catalysis Letters, 1990, 4, 129-138.	2.6	4
46	On activation of FeTi: Surface effects. Materials Research Bulletin, 1989, 24, 545-550.	5.2	5
47	Studies on hydrogen storage material FeTi: Effect of Sn substitution. Materials Research Bulletin, 1988, 23, 333-340.	5.2	16
48	Carbon monoxide methanation over FeTi1+x intermetallics. Journal of Catalysis, 1987, 107, 510-521.	6.2	11