List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11931511/publications.pdf Version: 2024-02-01

LUIZ C S REANCO

#	Article	IF	CITATIONS
1	Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats. Inflammation, 2022, 45, 1239-1253.	3.8	2
2	Recent Advances in Molecular Hydrogen Research Reducing Exercise-Induced Oxidative Stress and Inflammation. Current Pharmaceutical Design, 2021, 27, 731-736.	1.9	10
3	Role of hydrogen sulfide in ventilatory responses to hypercapnia in the medullary raphe of adult rats. Experimental Physiology, 2021, 106, 1992-2001.	2.0	7
4	Molecular hydrogen downregulates acute exhaustive exercise-induced skeletal muscle damage. Canadian Journal of Physiology and Pharmacology, 2021, 99, 812-820.	1.4	15
5	5-HT neurons of the medullary raphe contribute to respiratory control in toads. Respiratory Physiology and Neurobiology, 2021, 293, 103717.	1.6	3
6	Inhaled molecular hydrogen attenuates intense acute exercise-induced hippocampal inflammation in sedentary rats. Neuroscience Letters, 2020, 715, 134577.	2.1	10
7	Increased hypothalamic hydrogen sulphide contributes to endotoxin tolerance by downâ€modulating PGE ₂ production. Acta Physiologica, 2020, 228, e13373.	3.8	9
8	Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT _{1A} receptor activation in raphe pallidus. Acta Physiologica, 2020, 228, e13401.	3.8	13
9	Citral-induced analgesia is associated with increased spinal serotonin, reduced spinal nociceptive signaling, and reduced systemic oxidative stress in arthritis. Journal of Ethnopharmacology, 2020, 250, 112486.	4.1	12
10	Can selective serotonin reuptake inhibitors have a neuroprotective effect during COVID-19?. European Journal of Pharmacology, 2020, 889, 173629.	3.5	23
11	Increased lipopolysaccharideâ€induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE ₂ production and increased heat loss. Journal of Physiology, 2020, 598, 4663-4680.	2.9	7
12	Central leukotrienes modulate fever tolerance to LPS in rats. Journal of Thermal Biology, 2019, 84, 245-249.	2.5	1
13	Splenic anti-inflammatory reflex in immune tolerance. Journal of Thermal Biology, 2019, 85, 102411.	2.5	2
14	Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. Journal of Neuroinflammation, 2019, 16, 125.	7.2	31
15	Central serotonin prevents hypotension and hypothermia and reduces plasma and spleen cytokine levels during systemic inflammation. Brain, Behavior, and Immunity, 2019, 80, 255-265.	4.1	12
16	Central administration of aminooxyacetate, an inhibitor of H2S production, affects thermoregulatory but not cardiovascular and ventilatory responses to hypercapnia in spontaneously hypertensive rats. Respiratory Physiology and Neurobiology, 2019, 263, 38-46.	1.6	8
17	Molecular hydrogen potentiates hypothermia and prevents hypotension and fever in LPS-induced systemic inflammation. Brain, Behavior, and Immunity, 2019, 75, 119-128.	4.1	28
18	Endogenous peripheral hydrogen sulfide is propyretic: its permissive role in brown adipose tissue thermogenesis in rats. Experimental Physiology, 2018, 103, 397-407.	2.0	11

#	Article	IF	CITATIONS
19	Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radical Biology and Medicine, 2018, 129, 186-193.	2.9	39
20	Central fractalkine stimulates central prostaglandin E2 production and induces systemic inflammatory responses. Brain Research Bulletin, 2018, 140, 311-317.	3.0	0
21	Anxiolytic-like effect of hydrogen sulfide (H2S) in rats exposed and re-exposed to the elevated plus-maze and open field tests. Neuroscience Letters, 2017, 642, 77-85.	2.1	18
22	Central serotonin attenuates LPS-induced systemic inflammation. Brain, Behavior, and Immunity, 2017, 66, 372-381.	4.1	19
23	Antipyretic Effects of Citral and Possible Mechanisms of Action. Inflammation, 2017, 40, 1735-1741.	3.8	10
24	Effect of Physical Exercise on the Febrigenic Signaling is Modulated by Preoptic Hydrogen Sulfide Production. PLoS ONE, 2017, 12, e0170468.	2.5	9
25	Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock. Brain Research, 2016, 1650, 218-223.	2.2	6
26	Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats. Respiratory Physiology and Neurobiology, 2016, 231, 21-27.	1.6	12
27	Involvement of endogenous hydrogen sulfide (H2S) in the rostral ventrolateral medulla (RVLM) in hypoxia-induced hypothermia. Brain Research Bulletin, 2014, 108, 94-99.	3.0	9
28	Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Bötzinger complex downregulates ventilatory responses to hypoxia. Respiratory Physiology and Neurobiology, 2014, 200, 97-104.	1.6	14
29	Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. European Journal of Pharmacology, 2014, 738, 49-56.	3.5	23
30	Gaseous Mediators in Temperature Regulation. , 2014, 4, 1301-1338.		26
31	Serotonergic neurons in the nucleus raphé obscurus are not involved in the ventilatory and thermoregulatory responses to hypoxia in adult rats. Respiratory Physiology and Neurobiology, 2013, 187, 139-148.	1.6	13
32	Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Experimental Neurology, 2013, 240, 88-95.	4.1	29
33	Exogenous ghrelin attenuates endotoxin fever in rats. Peptides, 2011, 32, 2372-2376.	2.4	17
34	lonotropic glutamatergic receptors in the rostral medullary raphe modulate hypoxia and hypercapnia-induced hyperpnea. Respiratory Physiology and Neurobiology, 2011, 175, 104-111.	1.6	6
35	Involvement of the heme oxygenase–carbon monoxide–cGMP pathway in the nociception induced by acute painful stimulus in rats. Brain Research, 2011, 1385, 107-113.	2.2	16
36	Reduced stress fever is accompanied by increased glucocorticoids and reduced PGE2 in adult rats exposed to endotoxin as neonates. Journal of Neuroimmunology, 2010, 225, 77-81.	2.3	16

#	Article	IF	CITATIONS
37	Propyretic role of the locus coeruleus nitric oxide pathway. Experimental Physiology, 2010, 95, 669-677.	2.0	10
38	Gaseous neurotransmitters and their role in anapyrexia. Frontiers in Bioscience - Elite, 2010, E2, 948-960.	1.8	3
39	Commentaries on Viewpoint: Central chemoreception is a complex system function that involves multiple brain stem sites. Journal of Applied Physiology, 2009, 106, 1467-1470.	2.5	6
40	Role of the spinal cord heme oxygenase–carbon monoxide–cGMP pathway in the nociceptive response of rats. European Journal of Pharmacology, 2008, 581, 71-76.	3.5	13
41	Role of central nitric oxide in behavioral thermoregulation of toads during hypoxia. Physiology and Behavior, 2008, 95, 101-107.	2.1	10
42	Role of locus coeruleus heme oxygenase–carbon monoxide–cGMP pathway during hypothermic response to restraint. Brain Research Bulletin, 2008, 75, 526-532.	3.0	8
43	5-HT2A serotoninergic receptor in the locus coeruleus participates in the first phase of lipopolysaccharide-induced fever. Canadian Journal of Physiology and Pharmacology, 2007, 85, 497-501.	1.4	2
44	Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO ₂ . Journal of Applied Physiology, 2007, 103, 1780-1788.	2.5	56
45	Reduced central c-fos expression and febrile response to repeated LPS injection into periodontal tissue of rats. Brain Research, 2007, 1152, 57-63.	2.2	2
46	Physiology of temperature regulation: Comparative aspects. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 147, 616-639.	1.8	205
47	Role of the peripheral heme oxygenase–carbon monoxide pathway on the nociceptive response of rats to the formalin test: Evidence for a cGMP signaling pathway. European Journal of Pharmacology, 2007, 556, 55-61.	3.5	39
48	Serotoninergic receptors in the anteroventral preoptic region modulate the hypoxic ventilatory response. Respiratory Physiology and Neurobiology, 2006, 153, 1-13.	1.6	19
49	Respiratory and body temperature modulation by adenosine A1 receptors in the anteroventral preoptic region during normoxia and hypoxia. Respiratory Physiology and Neurobiology, 2006, 153, 115-125.	1.6	35
50	nNOS is involved in behavioral thermoregulation of newborn rats during hypoxia. Physiology and Behavior, 2006, 89, 681-686.	2.1	6
51	Neural Substrate of Cold-Seeking Behavior in Endotoxin Shock. PLoS ONE, 2006, 1, e1.	2.5	142
52	Coldâ€seeking behavior as a thermoregulatory strategy in systemic inflammation. European Journal of Neuroscience, 2006, 23, 3359-3367.	2.6	120
53	New role of the trigeminal nerve as a neuronal pathway signaling brain in acute periodontitis: participation of local prostaglandins. Pflugers Archiv European Journal of Physiology, 2006, 453, 73-82.	2.8	26
54	Role of the locus coeruleus carbon monoxide pathway in endotoxin fever in rats. Pflugers Archiv European Journal of Physiology, 2006, 453, 471-476.	2.8	21

#	Article	IF	CITATIONS
55	Central heme oxygenase–carbon monoxide pathway participates in the lipopolysaccharide-induced tolerance in rats. Brain Research, 2006, 1111, 83-89.	2.2	8
56	Locus coeruleus is a central chemoreceptive site in toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R997-R1006.	1.8	34
57	Involvement of serotoninergic receptors in the anteroventral preoptic region on hypoxia-induced hypothermia. Brain Research, 2005, 1044, 16-24.	2.2	31
58	Vasopressin release during endotoxaemic shock in mice lacking inducible nitric oxide synthase. Pflugers Archiv European Journal of Physiology, 2005, 450, 390-394.	2.8	31
59	Role of nitric oxide in tolerance to lipopolysaccharide in mice. Journal of Applied Physiology, 2005, 98, 1322-1327.	2.5	29
60	Glutamatergic receptors of the rostral ventrolateral medulla are involved in the ventilatory response to hypoxia. Respiratory Physiology and Neurobiology, 2005, 146, 125-134.	1.6	9
61	Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. Journal of Physiology, 2004, 558, 283-294.	2.9	68
62	Nitric oxide pathway in the nucleus raphe magnus modulates hypoxic ventilatory response but not anapyrexia in rats. Brain Research, 2004, 1017, 39-45.	2.2	12
63	Evidence for thermoregulation by dopamine D1 and D2 receptors in the anteroventral preoptic region during normoxia and hypoxia. Brain Research, 2004, 1030, 165-171.	2.2	39
64	Regulation of breathing and body temperature of a burrowing rodent during hypoxic–hypercapnia. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138, 97-104.	1.8	21
65	Role of l-glutamate in the locus coeruleus of rats in hypoxia-induced hyperventilation and anapyrexia. Respiratory Physiology and Neurobiology, 2004, 139, 157-166.	1.6	11
66	Nucleus isthmi and control of breathing in amphibians. Respiratory Physiology and Neurobiology, 2004, 143, 177-186.	1.6	19
67	Role of nitric oxide in thermoregulation during septic shock: involvement of vasopressin. Pflugers Archiv European Journal of Physiology, 2003, 447, 175-180.	2.8	30
68	Nitric oxide in the rostral ventrolateral medulla modulates hyperpnea but not anapyrexia induced by hypoxia. Brain Research, 2003, 977, 231-238.	2.2	14
69	Central nNOS is involved in restraint stress-induced fever: evidence for a cGMP pathway. Physiology and Behavior, 2003, 80, 139-145.	2.1	13
70	Role of the brain heme oxygenase-carbon monoxide pathway in stress fever in rats. Neuroscience Letters, 2003, 341, 193-196.	2.1	19
71	The nucleus raphe magnus modulates hypoxia-induced hyperventilation but not anapyrexia in rats. Neuroscience Letters, 2003, 347, 121-125.	2.1	32
72	Role of glutamate in the nucleus isthmi on the hypoxia- and hypercarbia-induced hyperventilation of toads. Respiratory Physiology and Neurobiology, 2003, 135, 47-58.	1.6	11

#	Article	IF	CITATIONS
73	Lactate as a modulator of hypoxia-induced hyperventilation. Respiratory Physiology and Neurobiology, 2003, 138, 37-44.	1.6	15
74	Role of l-glutamate in systemic AVP-induced hypothermia. Journal of Applied Physiology, 2003, 94, 271-277.	2.5	29
75	Fever and anapyrexia in systemic inflammation intracellular signaling by cyclic nucleotides. Frontiers in Bioscience - Landmark, 2003, 8, s1398-1408.	3.0	28
76	Antipyretic role of the NO-cGMP pathway in the anteroventral preoptic region of the rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R584-R593.	1.8	59
77	A neurochemical mechanism for hypoxia-induced anapyrexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1412-R1422.	1.8	42
78	Hypoxia-Induced Anapyrexia: Implications and Putative Mediators. Annual Review of Physiology, 2002, 64, 263-288.	13.1	142
79	Involvement of neuronal nitric oxide synthase in restraint stress-induced fever in rats. Physiology and Behavior, 2002, 75, 261-266.	2.1	18
80	Central heme oxygenase–carbon monoxide pathway in the control of breathing under normoxia and hypoxia. Respiratory Physiology and Neurobiology, 2002, 130, 151-160.	1.6	12
81	Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Autonomic Neuroscience: Basic and Clinical, 2002, 97, 110-115.	2.8	69
82	Central dopamine modulates anapyrexia but not hyperventilation induced by hypoxia. Journal of Applied Physiology, 2002, 92, 975-981.	2.5	22
83	Role of the preoptic carbon monoxide pathway in endotoxin fever in rats. Brain Research, 2002, 927, 27-34.	2.2	10
84	Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Research, 2002, 944, 135-145.	2.2	45
85	Is lactate a mediator of hypoxia-induced anapyrexia?. Pflugers Archiv European Journal of Physiology, 2002, 444, 810-815.	2.8	9
86	Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. Journal of Experimental Biology, 2002, 205, 3513-3518.	1.7	28
87	Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. Journal of Experimental Biology, 2002, 205, 3513-8.	1.7	19
88	Hypoxic metabolic response of the golden-mantled ground squirrel. Journal of Applied Physiology, 2001, 91, 603-612.	2.5	86
89	Carbon monoxide is the heme oxygenase product with a pyretic action: evidence for a cGMP signaling pathway. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R448-R457.	1.8	44
90	Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R338-R345.	1.8	11

#	Article	IF	CITATIONS
91	Role of central adenosine in the respiratory and thermoregulatory responses to hypoxia. NeuroReport, 2000, 11, 193-197.	1.2	40
92	Role of nitric oxide in rat locus coeruleus in hypoxia-induced hyperventilation and hypothermia. NeuroReport, 2000, 11, 2991-2995.	1.2	24
93	Role of neuronal nitric oxide synthase in hypoxia-induced anapyrexia in rats. Journal of Applied Physiology, 2000, 89, 1131-1136.	2.5	22
94	Central CO-heme oxygenase pathway raises body temperature by a prostaglandin-independent way. Journal of Applied Physiology, 2000, 88, 1607-1613.	2.5	43
95	Role of adenosine in the hypoxia-induced hypothermia of toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R196-R201.	1.8	12
96	Carbon monoxide as a novel mediator of the febrile response in the central nervous system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R499-R507.	1.8	27
97	Endogenous vasopressin does not mediate hypoxia-induced anapyrexia in rats. Journal of Applied Physiology, 1999, 86, 469-473.	2.5	11
98	Role of nitric oxide in hypoxia inhibition of fever. Journal of Applied Physiology, 1999, 87, 2186-2190.	2.5	2
99	Tolerance to lipopolysaccharide is related to the nitric oxide pathway. NeuroReport, 1999, 10, 3061-3065.	1.2	33
100	Role of nitric oxide in 2-deoxy-D-glucose-induced hypothermia in rats. NeuroReport, 1999, 10, 3101-3104.	1.2	14
101	Role of nitric oxide in systemic vasopressin-induced hypothermia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R937-R941.	1.8	26
102	Effect of nitric oxide synthase inhibition on hypercapnia-induced hypothermia and hyperventilation. Journal of Applied Physiology, 1998, 85, 967-972.	2.5	33
103	CORM-401, an orally active carbon monoxide-releasing molecule, increases body temperature by activating non-shivering thermogenesis in rats. Temperature, 0, , 1-8.	3.0	1