Pascal Furet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11928803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent <i>in vivo</i> antitumor activity. Molecular Cancer Therapeutics, 2008, 7, 1851-1863.	4.1	1,095
2	In vivo antitumor activity of NVP-AEW541—A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell, 2004, 5, 231-239.	16.8	507
3	The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature, 2017, 543, 733-737.	27.8	389
4	Discovery of 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), A Potent and Selective Inhibitor of the Fibroblast Growth Factor Receptor Family of Receptor Tyrosine Kinase. Journal of Medicinal Chemistry, 2011, 54, 7066-7083.	6.4	387
5	Characterization of the Novel and Specific PI3Kα Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials. Molecular Cancer Therapeutics, 2014, 13, 1117-1129.	4.1	385
6	Polyclonal Secondary <i>FGFR2</i> Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discovery, 2017, 7, 252-263.	9.4	384
7	Strategies toward the Design of Novel and Selective Protein Tyrosine Kinase Inhibitors. , 1999, 82, 195-206.		348
8	Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3741-3748.	2.2	348
9	Tyrosine kinase inhibitors: From rational design to clinical trials. Medicinal Research Reviews, 2001, 21, 499-512.	10.5	307
10	Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. , 2002, 93, 79-98.		294
11	Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. Journal of Medicinal Chemistry, 2018, 61, 8120-8135.	6.4	275
12	Different Susceptibility of Protein Kinases to Staurosporine Inhibition. Kinetic Studies and Molecular Bases for the Resistance of Protein Kinase CK2. FEBS Journal, 1995, 234, 317-322.	0.2	257
13	Discovery of Potent Antagonists of the Interaction between Human Double Minute 2 and Tumor Suppressor p53. Journal of Medicinal Chemistry, 2000, 43, 3205-3208.	6.4	250
14	Structural basis for specificity of GRB2-SH2 revealed by a novel ligand binding mode. Nature Structural Biology, 1996, 3, 586-589.	9.7	228
15	New Anilinophthalazines as Potent and Orally Well Absorbed Inhibitors of the VEGF Receptor Tyrosine Kinases Useful as Antagonists of Tumor-Driven Angiogenesis. Journal of Medicinal Chemistry, 2000, 43, 2310-2323.	6.4	224
16	Discovery of a Potent and Selective Protein Kinase CK2 Inhibitor by High-Throughput Docking. Journal of Medicinal Chemistry, 2003, 46, 2656-2662.	6.4	223
17	Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 80-93.	2.5	215
18	Use of a Pharmacophore Model for the Design of EGF-R Tyrosine Kinase Inhibitors: 4-(Phenylamino)pyrazolo[3,4- <i>d</i>]pyrimidines. Journal of Medicinal Chemistry, 1997, 40, 3601-3616.	6.4	206

Pascal Furet

#	Article	IF	CITATIONS
19	Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 445-453.	2.3	199
20	Prediction of Resistance to Small Molecule FLT3 Inhibitors. Cancer Research, 2004, 64, 6385-6389.	0.9	171
21	Inhibition of Cyclin-Dependent Kinase 4 (Cdk4) by Fascaplysin, a Marine Natural Product. Biochemical and Biophysical Research Communications, 2000, 275, 877-884.	2.1	163
22	Imatinib (STI571) Resistance in Chronic Myelogenous Leukemia: Molecular Basis of the Underlying Mechanisms and Potential Strategies for Treatment. Mini-Reviews in Medicinal Chemistry, 2004, 4, 285-299.	2.4	152
23	A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2000, 299, 245-253.	4.2	149
24	Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors. Journal of Medicinal Chemistry, 2015, 58, 6348-6358.	6.4	146
25	Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochemical Journal, 2003, 374, 639-646.	3.7	145
26	4-(Phenylamino)pyrrolopyrimidines:  Potent and Selective, ATP Site Directed Inhibitors of the EGF-Receptor Protein Tyrosine Kinase. Journal of Medicinal Chemistry, 1996, 39, 2285-2292.	6.4	141
27	Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 17-27.	2.3	123
28	Total Synthesis and Biological Evaluation of the Nakijiquinones. Journal of the American Chemical Society, 2001, 123, 11586-11593.	13.7	117
29	A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a Spectrum of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients. Cancer Research, 2011, 71, 5255-5264.	0.9	109
30	Potent and Selective Inhibition of Polycythemia by the Quinoxaline JAK2 Inhibitor NVP-BSK805. Molecular Cancer Therapeutics, 2010, 9, 1945-1955.	4.1	106
31	The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis, 2010, 13, 259-267.	7.2	104
32	Capmatinib (INC280) Is Active Against Models of Non–Small Cell Lung Cancer and Other Cancer Types with Defined Mechanisms of MET Activation. Clinical Cancer Research, 2019, 25, 3164-3175.	7.0	104
33	Anthranilic Acid Amides:Â A Novel Class of Antiangiogenic VEGF Receptor Kinase Inhibitors. Journal of Medicinal Chemistry, 2002, 45, 5687-5693.	6.4	101
34	Selective In Vivo and In Vitro Effects of a Small Molecule Inhibitor of Cyclin-Dependent Kinase 4. Journal of the National Cancer Institute, 2001, 93, 436-446.	6.3	100
35	Use of a Pharmacophore Model for the Design of EGFR Tyrosine Kinase Inhibitors:  Isoflavones and 3-Phenyl-4(1H)-quinolones. Journal of Medicinal Chemistry, 1999, 42, 1018-1026.	6.4	97
36	Structure-Based Design and Synthesis of 2-Benzylidene-benzofuran-3-ones as Flavopiridol Mimics. Journal of Medicinal Chemistry, 2002, 45, 1741-1747.	6.4	96

#	Article	IF	CITATIONS
37	Binding or Bending: Distinction of Allosteric Abl Kinase Agonists from Antagonists by an NMR-Based Conformational Assay. Journal of the American Chemical Society, 2010, 132, 7043-7048.	13.7	95
38	Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1027-1030.	2.2	92
39	Dianilinophthalimides: Potent and Selective, ATP-Competitive Inhibitors of the EGF-Receptor Protein Tyrosine Kinase. Journal of Medicinal Chemistry, 1994, 37, 1015-1027.	6.4	90
40	Structure-Based Design and Synthesis of High Affinity Tripeptide Ligands of the Grb2-SH2 Domain. Journal of Medicinal Chemistry, 1998, 41, 3442-3449.	6.4	90
41	Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411. Journal of Computer-Aided Molecular Design, 1995, 9, 465-472.	2.9	86
42	2,6,9-trisubstituted purines : Optimization towards highly potent and selective CDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 91-96.	2.2	76
43	Crystal Structures of Human MdmX (HdmX) in Complex with p53 Peptide Analogues Reveal Surprising Conformational Changes. Journal of Biological Chemistry, 2009, 284, 8812-8821.	3.4	67
44	The central valine concept provides an entry in a new class of non peptide inhibitors of the p53–MDM2 interaction. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3498-3502.	2.2	66
45	Identification of a new chemical class of potent angiogenesis inhibitors based on conformational considerations and database searching. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2967-2971.	2.2	65
46	Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chemical Biology, 2009, 9, 1.	1.6	65
47	FGF401, A First-In-Class Highly Selective and Potent FGFR4 Inhibitor for the Treatment of FGF19-Driven Hepatocellular Cancer. Molecular Cancer Therapeutics, 2019, 18, 2194-2206.	4.1	65
48	A distinct p53 target gene set predicts for response to the selective p53–HDM2 inhibitor NVP-CGM097. ELife, 2015, 4, .	6.0	65
49	Selective GRB2 SH2 inhibitors as anti-Ras therapy. , 1999, 83, 235-241.		64
50	Urea derivatives of STI571 as inhibitors of Bcr-Abl and PDGFR kinases. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5793-5797.	2.2	64
51	Discovery of Roblitinib (FGF401) as a Reversible-Covalent Inhibitor of the Kinase Activity of Fibroblast Growth Factor Receptor 4. Journal of Medicinal Chemistry, 2020, 63, 12542-12573.	6.4	64
52	Entry into a new class of protein kinase inhibitors by pseudo ring design. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 897-900.	2.2	61
53	The TEAD4–YAP/TAZ Protein–Protein Interaction: Expected Similarities and Unexpected Differences. ChemBioChem, 2013, 14, 1218-1225.	2.6	61
54	Discovery of 3-Aminobenzyloxycarbonyl as an N-Terminal Group Conferring High Affinity to the Minimal Phosphopeptide Sequence Recognized by the Grb2-SH2 Domain. Journal of Medicinal Chemistry, 1997, 40, 3551-3556.	6.4	60

#	Article	IF	CITATIONS
55	Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. European Journal of Medicinal Chemistry, 2004, 39, 11-26.	5.5	60
56	Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53–MDM2 Inhibitor HDM201. Cancer Research, 2018, 78, 6257-6267.	0.9	60
57	Inhibitors of the Abl kinase directed at either the ATP- or myristate-binding site. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 454-462.	2.3	59
58	Discovery of a novel class of highly potent inhibitors of the p53–MDM2 interaction by structure-based design starting from a conformational argument. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4837-4841.	2.2	59
59	Structural basis for the high affinity of amino-aromatic SH2 phosphopeptide ligands. Journal of Molecular Biology, 1998, 279, 1013-1022.	4.2	58
60	Structure-Based Design, Synthesis, and X-ray Crystallography of a High-Affinity Antagonist of the Grb2-SH2 Domain Containing an Asparagine Mimetic. Journal of Medicinal Chemistry, 1999, 42, 2358-2363.	6.4	57
61	Entry into a New Class of Potent Proteasome Inhibitors Having High Antiproliferative Activity by Structure-Based Design. Journal of Medicinal Chemistry, 2004, 47, 4810-4813.	6.4	56
62	Effect of Potent and Selective Inhibitors of the Grb2 SH2 Domain on Cell Motility. Journal of Biological Chemistry, 1999, 274, 23311-23315.	3.4	52
63	Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3621-3625.	2.2	51
64	Discovery and Pharmacological Characterization of Novel Quinazoline-Based PI3K Delta-Selective Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 762-767.	2.8	50
65	Potent Antagonists of the SH2 Domain of Grb2:Â Optimization of the X+1Position of 3-Amino-Z-Tyr(PO3H2)-X+1-Asn-NH2. Journal of Medicinal Chemistry, 1998, 41, 1741-1744.	6.4	47
66	Highly potent inhibitors of the Grb2-SH2 domain. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 221-226.	2.2	47
67	Structure-based design and protein X-ray analysis of a protein kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 221-224.	2.2	43
68	Dual Specificity of Src Homology 2 Domains for Phosphotyrosine Peptide Ligands. Biochemistry, 1997, 36, 5712-5718.	2.5	42
69	Discovery of a new class of catalytic topoisomerase II inhibitors targeting the ATP-binding site by structure based design. Part I. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4014-4017.	2.2	42
70	Discovery and SAR of potent, orally available 2,8-diaryl-quinoxalines as a new class of JAK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2609-2613.	2.2	40
71	Verification of a Designed Intramolecular Hydrogen Bond in a Drug Scaffold by Nuclear Magnetic Resonance Spectroscopy. Journal of Medicinal Chemistry, 2007, 50, 5875-5877.	6.4	38
72	A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis. Journal of Medicinal Chemistry, 2016, 59, 132-146.	6.4	35

#	Article	IF	CITATIONS
73	New synthesis of oxcarbazepine via remote metalation of protected N-o-tolyl-anthranilamide derivatives. Tetrahedron Letters, 2001, 42, 385-389.	1.4	34
74	Study of the cytotoxic effect of a peptidic inhibitor of the p53-hdm2 interaction in tumor cells. FEBS Letters, 2002, 529, 293-297.	2.8	34
75	Antileukemic Effects of Novel First- and Second-Generation FLT3 Inhibitors: Structure-Affinity Comparison. Genes and Cancer, 2010, 1, 1021-1032.	1.9	33
76	Tetra-substituted imidazoles as a new class of inhibitors of the p53–MDM2 interaction. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2110-2114.	2.2	33
77	2-Formylpyridyl Ureas as Highly Selective Reversible-Covalent Inhibitors of Fibroblast Growth Factor Receptor 4. ACS Medicinal Chemistry Letters, 2018, 9, 215-220.	2.8	33
78	p53 dynamics vary between tissues and are linked with radiation sensitivity. Nature Communications, 2021, 12, 898.	12.8	32
79	Structure-based design of potent CDK1 inhibitors derived from olomoucine. Journal of Computer-Aided Molecular Design, 2000, 14, 403-409.	2.9	31
80	Modeling of the Binding Mode of a Non-covalent Inhibitor of the 20S Proteasome. Application to Structure-Based Analogue Design. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1321-1324.	2.2	31
81	Mapping the X+1 binding site of the Grb2-SH2 domain with α,α-disubstituted cyclic α-amino acids. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2915-2920.	2.2	29
82	Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Blood, 2008, 112, 5161-5170.	1.4	29
83	Discovery of novel anticancer therapeutics targeting the PI3K/Akt/mTOR pathway. Future Medicinal Chemistry, 2009, 1, 137-155.	2.3	28
84	Approaches to selective fibroblast growth factor receptor 4 inhibition through targeting the ATP-pocket middle-hinge region. MedChemComm, 2017, 8, 1604-1613.	3.4	27
85	Aromatic Interactions with Phenylalanine 691 and Cysteine 828:  A Concept for FMS-like Tyrosine Kinase-3 Inhibition. Application to the Discovery of a New Class of Potential Antileukemia Agents. Journal of Medicinal Chemistry, 2006, 49, 4451-4454.	6.4	26
86	Structure-based design of peptidomimetic ligands of the Grb2-SH2 domain. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2865-2870.	2.2	25
87	Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Protein Science, 2018, 27, 1810-1820.	7.6	25
88	Structure-Based optimisation of 2-aminobenzylstatine derivatives: potent and selective inhibitors of the chymotrypsin-Like activity of the human 20S proteasome. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1331-1334.	2.2	24
89	Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors. Protein Science, 2020, 29, 509-520.	7.6	24
90	Novel β-lactam derivatives: Potent and selective inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 358-362.	2.2	23

#	Article	IF	CITATIONS
91	Molecular and structural characterization of a <scp>TEAD</scp> mutation at the origin of Sveinsson's chorioretinal atrophy. FEBS Journal, 2019, 286, 2381-2398.	4.7	23
92	Structure-based design and synthesis of phosphinate isosteres of phosphotyrosine for incorporation in Grb2-SH2 domain inhibitors. Part 1. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2337-2341.	2.2	21
93	2-Amino-aryl-7-aryl-benzoxazoles as potent, selective and orally available JAK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1724-1727.	2.2	21
94	New pyrazolo[1,5a]pyrimidines as orally active inhibitors of Lck. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3628-3631.	2.2	21
95	Comparison of the Kinase Profile of Midostaurin (Rydapt) with That of Its Predominant Metabolites and the Potential Relevance of Some Newly Identified Targets to Leukemia Therapy. Biochemistry, 2018, 57, 5576-5590.	2.5	21
96	X-Ray Crystallographic Studies of CDK2, a Basis for Cyclin-Dependent Kinase Inhibitor Design in Anti-Cancer Drug Research. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 15-23.	7.0	20
97	Knowledge-Based Virtual Screening: Application to the MDM4/p53 Protein–Protein Interaction. Methods in Molecular Biology, 2009, 575, 173-194.	0.9	20
98	Structure-based design of a non-peptidic antagonist of the SH2 domain of GRB2. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1973-1978.	2.2	19
99	In vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3404-3408.	2.2	19
100	Coupling of the antennapedia third helix to a potent antagonist of the p53/hdm2 protein–protein interaction. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2161-2164.	2.2	17
101	Discovery of a novel tricyclic 4H-thiazolo[5′,4′:4,5]pyrano[2,3-c]pyridine-2-amino scaffold and its application in a PI3Kα inhibitor with high PI3K isoform selectivity and potent cellular activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3582-3584.	2.2	17
102	Bioorthogonal Probes for the Study of MDM2â€p53 Inhibitors in Cells and Development of Highâ€Content Screening Assays for Drug Discovery. Angewandte Chemie - International Edition, 2016, 55, 16026-16030.	13.8	17
103	Structural States of Hdm2 and HdmX: Xâ€ray Elucidation of Adaptations and Binding Interactions for Different Chemical Compound Classes. ChemMedChem, 2019, 14, 1305-1314.	3.2	17
104	Identification and optimisation of a 4′,5-bisthiazole series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3569-3574.	2.2	16
105	STI571: A New Treatment Modality for CML?. ACS Symposium Series, 2001, , 245-259.	0.5	15
106	A new perspective on the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors. Scientific Reports, 2020, 10, 17442.	3.3	15
107	Identification and optimisation of 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole and 4,5-dihydrothiazolo[4,5-h]quinazoline series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3575-3581.	2.2	14
108	Identification of cylin-dependent kinase 1 inhibitors of a new chemical type by structure-based design and database searching. Journal of Computer-Aided Molecular Design, 2001, 15, 489-495.	2.9	12

#	Article	IF	CITATIONS
109	Structure-based design and synthesis of phosphinate isosteres of phosphotyrosine for incorporation in Grb2-SH2 domain inhibitors. Part 2. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2343-2346.	2.2	11
110	Convergent synthesis of potent peptide inhibitors of the Grb2-SH2 domain by palladium catalyzed coupling of a terminal alkyne. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1201-1203.	2.2	11
111	Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2065-2067.	2.2	11
112	Design of two new chemotypes for inhibiting the Janus kinase 2 by scaffold morphing. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1858-1860.	2.2	8
113	Optimisation of a 5-[3-phenyl-(2-cyclic-ether)-methyl-ether]-4-aminopyrrolopyrimidine series of IGF-1R inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2057-2064.	2.2	7
114	Prospects for Antiangiogenic Therapies Based upon VEGF Inhibition. ACS Symposium Series, 2001, , 282-298.	0.5	3
115	Bioorthogonal Probes for the Study of MDM2â€p53 Inhibitors in Cells and Development of Highâ€Content Screening Assays for Drug Discovery. Angewandte Chemie, 2016, 128, 16260-16264.	2.0	3
116	Abstract 1797: Discovery of NVP-CGM097, a highly potent and optimized small molecule inhibitor of Mdm2 under evaluation in a Phase I clinical trial. , 2014, , .		3
117	Identification of NVP-CLR457 as an Orally Bioavailable Non-CNS-Penetrant pan-Class IA Phosphoinositol-3-Kinase Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 8345-8379.	6.4	3
118	Structural Biology Contributions to the Discovery of Drugs to Treat Chronic Myelogenous Leukemia. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 37-61.	0.5	2
119	Potent Grb2-SH2 antagonists containing asparagine mimetics. , 2002, , 573-575.		1
120	Identification of a New Chemical Class of Potent Angiogenesis Inhibitors Based on Conformational Considerations and Database Searching ChemInform, 2003, 34, no.	0.0	0
121	Salicylanilides as Inhibitors of the Protein Tyrosine Kinase Epidermal Growth Factor Receptor ChemInform, 2004, 35, no.	0.0	0
122	Urea Derivatives of STI571 as Inhibitors of Bcr-Abl and PDGFR Kinases ChemInform, 2005, 36, no.	0.0	0
123	Novel, Potent and Selective JAK2 Inhibitors Blood, 2009, 114, 3777-3777.	1.4	0