Mohamed Baalousha

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1192865/mohamed-baalousha-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96
papers

6,392
citations

h-index

79
g-index

102
ext. papers

7,125
ext. citations

7,125
avg, IF

L-index

#	Paper	IF	Citations
96	Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams. <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 209, 112173	6	O
95	Natural organic matter composition and nanomaterial surface coating determine the nature of platinum nanomaterial-natural organic matter corona. <i>Science of the Total Environment</i> , 2022 , 806, 1504	1 7 9.2	О
94	Temporal variability in TiO engineered particle concentrations in rural Edisto River <i>Chemosphere</i> , 2022 , 134091	8.4	O
93	Temporal variation in TiO engineered particle concentrations in the Broad River during dry and wet weathers. <i>Science of the Total Environment</i> , 2021 , 807, 151081	10.2	О
92	Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2021 , 1641, 461981	4.5	6
91	Integrative Approach for Groundwater Pollution Risk Assessment Coupling Hydrogeological, Physicochemical and Socioeconomic Conditions in Southwest of the Damascus Basin. <i>Water</i> (Switzerland), 2021 , 13, 1220	3	3
90	Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. <i>Environmental Science & Environmental Science & Environment</i>	4 ^{10.3}	4
89	Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. <i>Chemosphere</i> , 2021 , 263, 128261	8.4	10
88	Concentrations and size distribution of TiO and Ag engineered particles in five wastewater treatment plants in the United States. <i>Science of the Total Environment</i> , 2021 , 753, 142017	10.2	17
87	Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124568	12.8	5
86	Effect of Nanoparticle Size and Natural Organic Matter Composition on the Bioavailability of Polyvinylpyrrolidone-Coated Platinum Nanoparticles to a Model Freshwater Invertebrate. <i>Environmental Science & Description (2011)</i> 2021, 55, 2452-2461	10.3	6
85	Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. <i>Science of the Total Environment</i> , 2021 , 792, 148426	10.2	4
84	Analysis of engineered nanomaterials (Ag, CeO and FeO) in spiked surface waters at environmentally relevant particle concentrations. <i>Science of the Total Environment</i> , 2020 , 715, 136927	10.2	10
83	Stormwater green infrastructures retain high concentrations of TiO engineered (nano)-particles. Journal of Hazardous Materials, 2020 , 392, 122335	12.8	15
82	Detection and quantification of engineered particles in urban runoff. <i>Chemosphere</i> , 2020 , 248, 126070	8.4	24
81	Nanoparticle size and natural organic matter composition determine aggregation behavior of polyvinylpyrrolidone coated platinum nanoparticles. <i>Environmental Science: Nano</i> , 2020 , 7, 3318-3332	7.1	5
80	Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network. <i>Frontiers in Marine Science</i> , 2020 , 7, 1-548	4.5	63

79	Transport of N-CD and Pre-Sorbed Pb in Saturated Porous Media. <i>Molecules</i> , 2020 , 25,	4.8	1
78	How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils. <i>Environmental Chemistry Letters</i> , 2020 , 18, 215-227	13.3	15
77	Modeling the transport of titanium dioxide nanomaterials from combined sewer overflows in an urban river. <i>Science of the Total Environment</i> , 2019 , 696, 133904	10.2	13
76	Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. <i>Environmental Science: Nano</i> , 2019 , 6, 763-777	7.1	63
75	Dispersion of natural nanomaterials in surface waters for better characterization of their physicochemical properties by AF4-ICP-MS-TEM. <i>Science of the Total Environment</i> , 2019 , 682, 663-672	10.2	11
74	Improved extraction efficiency of natural nanomaterials in soils to facilitate their characterization using a multimethod approach. <i>Science of the Total Environment</i> , 2019 , 677, 34-46	10.2	9
73	Synthesis, characterization, and environmental behaviors of monodispersed platinum nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 330-341	9.3	9
72	Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 5251-5266	5.1	8
71	Natural organic matter composition determines the molecular nature of silver nanomaterial-NOM corona. <i>Environmental Science: Nano</i> , 2018 , 5, 868-881	7.1	35
70	Co-transport and remobilization of Cu and Pb in quartz column by carbon dots. <i>Science of the Total Environment</i> , 2018 , 626, 995-1004	10.2	11
69	Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles. <i>Science of the Total Environment</i> , 2018 , 625, 1518-1526	10.2	27
68	Comparative study of dissolved and nanoparticulate Ag effects on the life cycle of an estuarine meiobenthic copepod, Amphiascus tenuiremis. <i>Nanotoxicology</i> , 2018 , 12, 375-389	5.3	5
67	A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis. <i>Science of the Total Environment</i> , 2018 , 618, 597-607	10.2	66
66	The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 13382-13395	5.1	67
65	Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. <i>Chemosphere</i> , 2018 , 191, 616-625	8.4	36
64	Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. <i>Water Research</i> , 2018 , 133, 338-347	12.5	47
63	Toward a better extraction of titanium dioxide engineered nanomaterials from complex environmental matrices. <i>NanoImpact</i> , 2018 , 11, 119-127	5.6	12
62	Evolution of human health risk based on EPA modeling for adults and children and pollution level of potentially toxic metals in Rafsanjan road dust: a case study in a semi-arid region, Iran. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 19767-19778	5.1	18

61	Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. <i>Scientific Reports</i> , 2018 , 8, 17736	4.9	8
60	Enrichments of Metals, Including Methylmercury, in Sewage Spills in South Carolina, USA. <i>Journal of Environmental Quality</i> , 2018 , 47, 1258-1266	3.4	4
59	Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China. <i>Science of the Total Environment</i> , 2018 , 637-638, 1311-1320	10.2	24
58	Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. <i>NanoImpact</i> , 2017 , 6, 55-68	5.6	41
57	Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	30
56	Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes. <i>Science of the Total Environment</i> , 2017 , 581-582, 268-276	10.2	18
55	Occurrence and Removal of Engineered Nanoparticles in Drinking Water Treatment and Wastewater Treatment Processes. <i>Separation and Purification Reviews</i> , 2017 , 46, 255-272	7.3	39
54	Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics. Journal of Colloid and Interface Science, 2017 , 487, 192-200	9.3	35
53	Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. <i>Science of the Total Environment</i> , 2016 , 568, 95-106	10.2	48
52	Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai, China. <i>Science of the Total Environment</i> , 2016 , 554-555, 228-36	10.2	14
51	Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends. <i>Environmental Science: Nano</i> , 2016 , 3, 323-345	7.1	86
50	The concentration-dependent behaviour of nanoparticles. Environmental Chemistry, 2016, 13, 1	3.2	49
49	Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions. <i>Environmental Science & Environmental Science</i>	10.3	28
48	Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. <i>Science of the Total Environment</i> , 2016 , 557-558, 740-53	10.2	73
47	The concentration-dependent aggregation of Ag NPs induced by cystine. <i>Science of the Total Environment</i> , 2016 , 557-558, 395-403	10.2	28
46	Does natural organic matter increase the bioavailability of cerium dioxide nanoparticles to fish?. <i>Environmental Chemistry</i> , 2015 , 12, 673	3.2	2
45	Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. <i>Environmental Science: Nano</i> , 2015 , 2, 421-428	7.1	94
44	Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. <i>Journal of Hazardous Materials</i> , 2015 , 299, 241-8	12.8	43

(2012-2015)

43	An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. <i>Science of the Total Environment</i> , 2015 , 537, 479-86	10.2	38
42	Transformations of citrate and Tween coated silver nanoparticles reacted with NaB. <i>Science of the Total Environment</i> , 2015 , 502, 344-53	10.2	52
41	Methods for Measuring Concentration (Mass, Surface Area and Number) of Nanomaterials. <i>Frontiers of Nanoscience</i> , 2015 , 8, 153-181	0.7	8
40	Association of Arsenic and Phosphorus with Iron Nanoparticles between Streams and Aquifers: Implications for Arsenic Mobility. <i>Environmental Science & Environmental Science </i>	10.3	23
39	Evaluation of charge and agglomeration behavior of TiO[hanoparticles in ecotoxicological media. <i>Science of the Total Environment</i> , 2015 , 535, 45-53	10.2	43
38	A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 2084-2134	11.1	145
37	Modeling nanomaterial environmental fate in aquatic systems. <i>Environmental Science & Environmental Sc</i>	10.3	209
36	Overview of Environmental Nanoscience. <i>Frontiers of Nanoscience</i> , 2014 , 7, 1-54	0.7	5
35	Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 1338-	4 7 3	49
34	Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. <i>Science of the Total Environment</i> , 2013 , 454-455, 119-31	10.2	194
33	Effects of particle size and coating on nanoscale Ag and TiOlexposure in zebrafish (Danio rerio) embryos. <i>Nanotoxicology</i> , 2013 , 7, 1315-24	5.3	90
32	Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 419, 238-247	5.1	36
31	Nanoparticle dispersity in toxicology. <i>Nature Nanotechnology</i> , 2013 , 8, 308-9	28.7	74
30	Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 144-54	3.8	131
29	From soil to cave: Transport of trace metals by natural organic matter in karst dripwaters. <i>Chemical Geology</i> , 2012 , 304-305, 68-82	4.2	94
28	Characterization of cerium oxide nanoparticles-part 1: size measurements. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 983-93	3.8	59
27	Characterization of cerium oxide nanoparticles-part 2: nonsize measurements. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 994-1003	3.8	49
26	Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. <i>Environmental Science & Description</i> 2012, 46, 6134-42	10.3	123

25	Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems 2011 , 89-129		17
24	Size, speciation and lability of NOMEnetal complexes in hyperalkaline cave dripwater. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 7533-7551	5.5	43
23	Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A, 2011 , 1218, 4226-33	4.5	173
22	Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. <i>Journal of Chromatography A</i> , 2011 , 1218, 4078-103	4.5	223
21	Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles. <i>Environmental Chemistry</i> , 2010 , 7, 36	3.2	20
20	Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. <i>Toxicological Sciences</i> , 2010 , 115, 521-34	4.4	265
19	Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish. <i>Environmental Science & Environmental Science</i>	10.3	223
18	Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. <i>Environmental Chemistry</i> , 2010 , 7, 377	3.2	40
17	Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. <i>Environmental Chemistry</i> , 2010 , 7, 50	3.2	152
16	Algal testing of titanium dioxide nanoparticlestesting considerations, inhibitory effects and modification of cadmium bioavailability. <i>Toxicology</i> , 2010 , 269, 190-7	4.4	247
15	Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. <i>Science of the Total Environment</i> , 2009 , 407, 2093-101	10.2	410
14	Size fractionation and optical properties of colloids in an organic-rich estuary (Thurso, UK). <i>Marine Chemistry</i> , 2009 , 113, 227-237	3.7	33
13	Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. <i>Environmental Science & Environmental Scie</i>	10.3	447
12	Nanoparticles: structure, properties, preparation and behaviour in environmental media. <i>Ecotoxicology</i> , 2008 , 17, 326-43	2.9	433
11	Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1875-82	3.8	287
10	Characterization of natural aquatic colloids (. Environmental Science & Enviro	7 10.3	103
9	Size fractionation and characterization of natural aquatic colloids and nanoparticles. <i>Science of the Total Environment</i> , 2007 , 386, 93-102	10.2	40
8	Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids-trace element interaction. <i>Environmental Science & amp; Technology</i> , 2006 ,	10.3	95

LIST OF PUBLICATIONS

7	Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. <i>Journal of Chromatography A</i> , 2006 , 1104, 272-81	4.5	88
6	Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 272, 48-55	5.1	184
5	Natural sample fractionation by FlFFF-MALLS-TEM: sample stabilization, preparation, pre-concentration and fractionation. <i>Journal of Chromatography A</i> , 2005 , 1093, 156-66	4.5	50
4	Supramolecular structure of humic acids by TEM with improved sample preparation and staining. <i>Microscopy Research and Technique</i> , 2005 , 66, 299-306	2.8	55
3	3D characterization of natural colloids by FlFFF-MALLS-TEM. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 383, 549-56	4.4	38
2	Overview of Nanoscience in the Environment1-29		4
1	Natural Colloids and Nanoparticles in Aquatic and Terrestrial Environments109-161		8