
## Boris Kablar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11928177/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Myf5 and MyoD activation define independent myogenic compartments during embryonic development.<br>Developmental Biology, 2003, 258, 307-318.                                                                                             | 2.0 | 125       |
| 2  | Myf5 â^'/â^' :MyoD â^'/â^' amyogenic fetuses reveal the importance of early contraction and static loading by<br>striated muscle in mouse skeletogenesis. Development Genes and Evolution, 2006, 216, 1-9.                                | 0.9 | 109       |
| 3  | Xotx genes in the developing brain of Xenopus laevis. Mechanisms of Development, 1996, 55, 145-158.                                                                                                                                       | 1.7 | 91        |
| 4  | The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals. Mechanisms of Development, 1998, 73, 73-83.                                                                                    | 1.7 | 84        |
| 5  | Myogenic Determination Occurs Independently in Somites and Limb Buds. Developmental Biology, 1999, 206, 219-231.                                                                                                                          | 2.0 | 78        |
| 6  | MyoD and Myf-5 define the specification of musculature of distinct embryonic origin. Biochemistry and Cell Biology, 1998, 76, 1079-1091.                                                                                                  | 2.0 | 68        |
| 7  | Pulmonary hypoplasia in the connective tissue growth factor ( <i>Ctgf</i> ) null mouse.<br>Developmental Dynamics, 2008, 237, 485-493.                                                                                                    | 1.8 | 61        |
| 8  | Development in the Absence of Skeletal Muscle Results in the Sequential Ablation of Motor Neurons from the Spinal Cord to the Brain. Developmental Biology, 1999, 208, 93-109.                                                            | 2.0 | 55        |
| 9  | Abnormal development of the intercostal muscles and the rib cage in <i>Myf5</i> â^'/â^' embryos leads to pulmonary hypoplasia. Developmental Dynamics, 2005, 232, 43-54.                                                                  | 1.8 | 30        |
| 10 | Contractile activity of skeletal musculature involved in breathing is essential for normal lung cell<br>differentiation, as revealed in <i>Myf5â^'/â^':MyoDâ^'/â^'</i> embryos. Developmental Dynamics, 2005, 233,<br>772-782.            | 1.8 | 27        |
| 11 | A significant reduction of the diaphragm in mdx:MyoDâ^'/â^'9th embryos suggests a role for MyoD in the<br>diaphragm development. Developmental Biology, 2003, 261, 324-336.                                                               | 2.0 | 26        |
| 12 | Presence of neurotrophic factors in skeletal muscle correlates with survival of spinal cord motor neurons. Developmental Dynamics, 2005, 234, 659-669.                                                                                    | 1.8 | 24        |
| 13 | Abnormal development of the diaphragm in mdx:MyoD-/-(9th) embryos leads to pulmonary hypoplasia.<br>International Journal of Developmental Biology, 2003, 47, 363-71.                                                                     | 0.6 | 24        |
| 14 | The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root<br>ganglia proprioceptive sensory neurons. International Journal of Developmental Neuroscience, 2005,<br>23, 613-620.                   | 1.6 | 23        |
| 15 | Immunohistochemical and electronmicroscopic features of mesenchymal-to-epithelial transition in<br>human developing, postnatal and nephrotic podocytes. Histochemistry and Cell Biology, 2017, 147,<br>481-495.                           | 1.7 | 15        |
| 16 | Determination of retinal cell fates is affected in the absence of extraocular striated muscles.<br>Developmental Dynamics, 2003, 226, 478-490.                                                                                            | 1.8 | 14        |
| 17 | Immunohistochemical expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the normal human kidney development. Acta Histochemica, 2019, 121, 531-538.                                                                                      | 1.8 | 14        |
| 18 | Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine<br>receptor transformation in the esophagus ofMyf5â^'/â^':MyoDâ^'/â^'andNT-3â^'/â^'embryos. Developmental<br>Dynamics, 2004, 231, 683-692. | 1.8 | 11        |

BORIS KABLAR

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Role of skeletal muscle in mandible development. Histology and Histopathology, 2014, 29, 1377-94.                                                                                                                      | 0.7 | 11        |
| 20 | Role of skeletal muscle in motor neuron development. Histology and Histopathology, 2016, 31, 699-719.                                                                                                                  | 0.7 | 10        |
| 21 | Information provided by the skeletal muscle and associated neurons is necessary for proper brain development. International Journal of Developmental Neuroscience, 2002, 20, 573-584.                                  | 1.6 | 9         |
| 22 | Differential survival response of neurons to exogenous GDNF depends on the presence of skeletal muscle. Developmental Dynamics, 2008, 237, 3169-3178.                                                                  | 1.8 | 9         |
| 23 | Subpopulations of motor and sensory neurons respond differently to brain-derived neurotrophic factor depending on the presence of the skeletal muscle. Developmental Dynamics, 2006, 235, 2175-2184.                   | 1.8 | 7         |
| 24 | Role of skeletal muscle in ear development. Histology and Histopathology, 2017, 32, 987-1000.                                                                                                                          | 0.7 | 7         |
| 25 | MyoD– lacZ transgenes are early markers in the neural retina, but MyoD function appears to be<br>inhibited in the developing retinal cells. International Journal of Developmental Neuroscience, 2004,<br>22, 215-224. | 1.6 | 5         |
| 26 | Altered retinal cell differentiation in the APâ€3 delta mutant ( <i>Mocha</i> ) mouse. International<br>Journal of Developmental Neuroscience, 2009, 27, 701-708.                                                      | 1.6 | 5         |
| 27 | The influence of acoustic and static stimuli on development of inner ear sensory epithelia.<br>International Journal of Developmental Neuroscience, 2010, 28, 309-315.                                                 | 1.6 | 5         |
| 28 | Genetic control of development inXenopus laevis. Genetica, 1994, 94, 235-248.                                                                                                                                          | 1.1 | 4         |
| 29 | Different regulatory elements within the MyoD promoter control its expression in the brain and inhibit its functional consequences in neurogenesis. Tissue and Cell, 2002, 34, 164-169.                                | 2.2 | 4         |
| 30 | Differential responses to the application of exogenous NT-3 are observed for subpopulations of motor and sensory neurons depending on the presence of skeletal muscle. Developmental Dynamics, 2007, 236, 1193-1202.   | 1.8 | 3         |
| 31 | The Role of Skeletal Muscle in External Ear Development. Plastic and Reconstructive Surgery - Global<br>Open, 2015, 3, e382.                                                                                           | 0.6 | 2         |
| 32 | Striated-for-smooth muscle replacement in the developing mouse esophagus. Histology and<br>Histopathology, 2019, 34, 457-467.                                                                                          | 0.7 | 1         |