
Chun-Yang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11927838/publications.pdf Version: 2024-02-01

(

#	Article	IF	CITATIONS
1	24-3: <i>Invited Paper</i> : Light Out-Coupling of OLEDs: the Transparent Electrode Effects. Digest of Technical Papers SID International Symposium, 2016, 47, 298-300.	0.3	0
2	Simple Planar Indiumâ€Tinâ€Oxideâ€Free Organic Lightâ€Emitting Devices with Nearly 39% External Quantum Efficiency. Advanced Optical Materials, 2016, 4, 365-370.	7.3	17
3	Analyses of optical out-coupling of organic light-emitting devices having micromesh indium tin oxide and conducting polymer as composite transparent electrode. Optics Express, 2016, 24, A810.	3.4	13
4	Achieving Above 60% External Quantum Efficiency in Organic Lightâ€Emitting Devices Using ITOâ€Free Lowâ€Index Transparent Electrode and Emitters with Preferential Horizontal Emitting Dipoles. Advanced Functional Materials, 2016, 26, 3250-3258.	14.9	70
5	Efficient transparent small-molecule organic light-emitting devices adopting laminated transparent top electrodes. Organic Electronics, 2016, 28, 25-30.	2.6	20
6	Enhance Light Out-Coupling of OLEDs: Low-Index Active Materials and Horizontal Dipole Emitters. , 2016, , .		1
7	Lightâ€Emitting Devices: Enhancing Optical Outâ€Coupling of Organic Lightâ€Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer (Adv. Mater. 33/2015). Advanced Materials, 2015, 27, 4806-4806.	21.0	2
8	Enhancing Optical Outâ€Coupling of Organic Lightâ€Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer. Advanced Materials, 2015, 27, 4883-4888.	21.0	82
9	Unlocking the Full Potential of Conducting Polymers for Highâ€Efficiency Organic Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 929-934.	21.0	32
10	Spontaneous Formation of Nanofibrillar and Nanoporous Structures in Highâ€Conductivity Conducting Polymers and Applications for Dye‣ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401738.	19.5	17
11	Exploring Full Potential of Conducting Polymers for Enhancing Light Out-Coupling of OLEDs. , 2015, , .		0
12	Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes. Applied Physics Letters, 2014, 104, .	3.3	26
13	Porphyrins for efficient dye-sensitized solar cells covering the near-IR region. Journal of Materials Chemistry A, 2014, 2, 991-999.	10.3	72
14	Efficient gel-state dye-sensitized solar cells adopting polymer gel electrolyte based on poly(methyl) Tj ETQq0 0 0	rgBT/Ove 2.6	rlo <u>ç</u> k 10 Tf 5
15	Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14, 2866-2874.	2.6	19
16	Nanostructured platinum counter electrodes by self-assembled nanospheres for dye-sensitized solar cells. Organic Electronics, 2012, 13, 1865-1872.	2.6	14
17	Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells. Organic Electronics, 2012, 13, 199-205.	2.6	29

Nanoporous platinum counter electrodes by glancing angle deposition for dye-sensitized solar cells.
Organic Electronics, 2012, 13, 856-863.
2.6