List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11927524/publications.pdf Version: 2024-02-01

FANC RO

#	Article	IF	CITATIONS
1	Robust and low cost in-fiber acousto-opticMach-Zehnder interferometer and its application indual-wavelength laser. Applied Optics, 2022, 61, 22-27.	1.8	0
2	On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency. Optics Letters, 2022, 47, 854.	3.3	22
3	Directional emission in X-cut lithium niobate microresonators without chaos dynamics. Photonics Research, 2022, 10, 401.	7.0	1
4	Integrated ytterbium-doped lithium niobate microring lasers. Optics Letters, 2022, 47, 1427.	3.3	12
5	Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides. Optics Letters, 2022, 47, 1574.	3.3	15
6	Research progress in lithium niobate on insulator lasers. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022, 52, 294221.	0.4	1
7	Microdisk lasers on an erbium-doped lithium-niobite chip. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	63
8	On-chip erbium-doped lithium niobate waveguide amplifiers [Invited]. Chinese Optics Letters, 2021, 19, 060008.	2.9	38
9	Compact Dynamic In-Fiber Acoustically-Induced Mach-Zehnder Interferometer Based on Phase Mismatch and Its Application in a Tunable and Switchable Dual-Wavelength Laser. Journal of Lightwave Technology, 2021, 39, 3539-3545.	4.6	4
10	Bandwidth Tunable Filter Based on Ideal Quasi-Critical Coupling State in WGM Cavity. Journal of Lightwave Technology, 2021, 39, 6547-6552.	4.6	5
11	All-Fiber Frequency Shifter Based on an Acousto-Optic Tunable Filter Cascaded with a Tapered Fiber-Coupled Microcavity. Crystals, 2021, 11, 497.	2.2	2
12	On-chip erbium-doped lithium niobate microring lasers. Optics Letters, 2021, 46, 3275.	3.3	44
13	Integrated lithium niobate single-mode lasers by the Vernier effect. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	36
14	Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10 ⁸ . New Journal of Physics, 2021, 23, 123027.	2.9	39
15	Integrated LNOI Single-mode Lasers by Vernier Effect. , 2021, , .		0
16	Polarization-modified Fano line shape spectrum with a single whispering gallery mode. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	8
17	Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On hip Devices. Advanced Materials, 2020, 32, e1806452.	21.0	137
18	Dirac-vortex topological cavities. Nature Nanotechnology, 2020, 15, 1012-1018.	31.5	95

#	Article	IF	CITATIONS
19	Free-space self-interference microresonator with tunable coupling regimes. Applied Physics Letters, 2020, 117, 031106.	3.3	3
20	Nano-Domains Produced through a Two-Step Poling Technique in Lithium Niobate on Insulators. Materials, 2020, 13, 3617.	2.9	2
21	Intuitive model of exceptional points in an optical whispering-gallery microcavity perturbed by nanoparticles. Physical Review A, 2020, 101, .	2.5	7
22	Improvement on Thermal Stability of Nano-Domains in Lithium Niobate Thin Films. Crystals, 2020, 10, 74.	2.2	7
23	Diabolical points in coupled active cavities with quantum emitters. Light: Science and Applications, 2020, 9, 6.	16.6	20
24	Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Optics Letters, 2020, 45, 3353.	3.3	27
25	High-efficiency chirped grating couplers on lithium niobate on insulator. Optics Letters, 2020, 45, 6651.	3.3	30
26	Second-harmonic generation using d ₃₃ in periodically poled lithium niobate microdisk resonators. Photonics Research, 2020, 8, 311.	7.0	51
27	Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Research, 2020, 8, 1910.	7.0	183
28	Biperiodically Poled Lithium Niobate Microcavities for Multiple Nonlinear Optical Processes. , 2020, , .		1
29	Ultrathin Ruddlesden–Popper Perovskite Heterojunction for Sensitive Photodetection. Small, 2019, 15, e1902890.	10.0	56
30	Self-focusing and self-bending of surface plasmons in longitudinally modulated metasurfaces. Optics Communications, 2019, 450, 136-140.	2.1	2
31	Coexistence of self-reduction from Mn ⁴⁺ to Mn ²⁺ and elastico-mechanoluminescence in diphase KZn(PO ₃) ₃ :Mn ²⁺ . Journal of Materials Chemistry C, 2019, 7, 7096-7103.	5.5	43
32	Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Physical Review Letters, 2019, 122, 173903.	7.8	141
33	Enhance stable coupling region of a high-Q WGM up to micrometer. Applied Physics Letters, 2019, 115, .	3.3	6
34	Feasibility of quasicritical coupling based on LP modes and its application as a filter with tunable bandwidth and stable insertion loss. Optics Express, 2019, 27, 23610.	3.4	6
35	Microdisk resonators with lithium-niobate film on silicon substrate. Optics Express, 2019, 27, 33662.	3.4	9
36	Quasicritical coupling in a few-mode tapered-fiber coupled whispering-gallery-mode system. Physical Review A. 2018, 98, .	2.5	11

#	Article	IF	CITATIONS
37	Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators. Optics Express, 2018, 26, 15268.	3.4	2
38	Fast light in the generation configuration of stimulated Brillouin scattering based on high-Q micro-cavities. Optics Express, 2018, 26, 15377.	3.4	3
39	High-Q chaotic lithium niobate microdisk cavity. Optics Letters, 2018, 43, 2917.	3.3	46
40	Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	32
41	All-fiber narrow-linewidth ring laser with continuous and large tuning range based on microsphere resonator and fiber Bragg grating. Optics Express, 2018, 26, 32652.	3.4	15
42	Free-space coupling enhancement of micro-resonators via self-accelerating beams. Optics Express, 2018, 26, 32055.	3.4	0
43	High- <i>Q</i> Microcavity Enhanced Optical Properties of CuInS ₂ /ZnS Colloidal Quantum Dots toward Non-Photodegradation. ACS Photonics, 2017, 4, 369-377.	6.6	9
44	Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. Journal of Applied Physics, 2017, 121, .	2.5	4
45	Controllable oscillatory lateral coupling in a waveguide-microdisk-resonator system. Scientific Reports, 2017, 7, 8045.	3.3	8
46	Sum Frequency and Second Harmonic Generations in Lithium Niobate Microdisk Resonators on a Chip. Journal of Physics: Conference Series, 2017, 867, 012016.	0.4	0
47	Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Research, 2017, 5, 623.	7.0	55
48	Thermo-optic effects in on-chip lithium niobate microdisk resonators. Optics Express, 2016, 24, 21869.	3.4	45
49	Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photonics, 2016, 10, 399-405.	31.4	185
50	Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser. Optics Express, 2016, 24, 2406.	3.4	17
51	All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber. Optics Express, 2016, 24, 7449.	3.4	28
52	Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter. Optics Letters, 2016, 41, 638.	3.3	23
53	Thermo-optic oscillatory behavior in on-chip lithium-niobate microdisk resonators. , 2016, , .		0
54	Vertically coupled microresonators and oscillatory mode splitting in photonic molecules. Optics Express, 2015, 23, 30793.	3.4	6

#	Article	IF	CITATIONS
55	Photo-Hall effect in highly Mg-doped lithium niobate crystals. Applied Physics Letters, 2015, 107, .	3.3	5
56	Lithium-niobate-silica hybrid whispering-gallery-mode resonators. , 2015, , .		23
57	Lithiumâ€Niobate–Silica Hybrid Whisperingâ€Galleryâ€Mode Resonators. Advanced Materials, 2015, 27, 8075-8081.	21.0	44
58	Mode characteristics of silver-coated inverted-wedge silica microdisks. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	5
59	Two-photon correlation and photon transport in disordered passive parity-time-symmetric lattices. Physical Review A, 2015, 91, .	2.5	1
60	High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Optics Express, 2015, 23, 23072.	3.4	163
61	All-Fiber Tunable Ring Laser Based on an Acousto-Optic Tunable Coupler. , 2015, , .		1
62	Optical Heterodyne Micro-Vibration Measurement Based on All-Fiber Acousto-Optic Frequency Shifter. , 2015, , .		0
63	Fully vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 2459.	1.5	15
64	Anomalous refraction in disordered one-dimensional photonic lattices. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 105.	2.1	5
65	Inverted-wedge silica resonators for controlled and stable coupling. Optics Letters, 2014, 39, 1841.	3.3	21
66	Quantum correlation of path-entangled two-photon states in waveguide arrays with defects. AIP Advances, 2014, 4, 047117.	1.3	1
67	Lensless imaging based on coherent backscattering in random media. AIP Advances, 2014, 4, 087124.	1.3	1
68	Transverse localization of light in the disordered one-dimensional waveguide arrays in the linear and nonlinear regimes. Optics Communications, 2013, 296, 65-71.	2.1	6
69	All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber. Optics Communications, 2013, 292, 46-48.	2.1	13
70	Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters. Optics Express, 2013, 21, 16621.	3.4	24
71	Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber. Optics Letters, 2012, 37, 1241.	3.3	38
72	Active chromatic control and resonant improvement on the transverse-phase-modulation-induced group delay of light. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
73	All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer. Optics Letters, 2011, 36, 271.	3.3	20
74	Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry. Journal of Applied Physics, 2010, 108, .	2.5	4
75	Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals. Journal of Applied Physics, 2010, 107, .	2.5	26
76	Active chromatic control on the group velocity of light at arbitrary wavelength in benzocyclobutene polymer. Optics Express, 2009, 17, 18292.	3.4	2
77	SLOW AND FAST LIGHTS WITH MOVING AND STATIONARY REFRACTIVE INDEX GRATINGS IN SOLIDS AT ROOM TEMPERATURE. International Journal of Modern Physics B, 2008, 22, 447-468.	2.0	2
78	Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave couplinglike mechanism. Applied Physics Letters, 2008, 92, 021121.	3.3	14
79	Slow and Fast Lights in Photorefractive Materials. , 2007, , 277-294.		1
80	Ultraslow Gaussian pulse propagation induced by a dispersive phase coupling in photorefractive bismuth silicon oxide crystals at room temperature. Optics Communications, 2006, 261, 349-352.	2.1	4
81	Transition between superluminal and subluminal light propagation based on classical two-wave mixing. , 2006, , .		0
82	Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals. Optics Express, 2005, 13, 8198.	3.4	19
83	Phase-Coupling-Induced Ultraslow Light Propagation in Solids at Room Temperature. Physical Review Letters, 2004, 93, 133903.	7.8	67
84	Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing. Applied Optics, 2004, 43, 1167.	2.1	34