Xian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11927442/publications.pdf

Version: 2024-02-01

759233 677142 34 609 12 22 citations h-index g-index papers 34 34 34 541 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems. Optics Express, 2014, 22, 18770.	3.4	124
2	Spectral Efficiency-Adaptive Optical Transmission Using Time Domain Hybrid QAM for <newline></newline> Agile Optical Networks. Journal of Lightwave Technology, 2013, 31, 2621-2628.	4.6	74
3	Advanced DSP Techniques Enabling High Spectral Efficiency and Flexible Transmissions: Toward elastic optical networks. IEEE Signal Processing Magazine, 2014, 31, 82-92.	5.6	56
4	A family of Nyquist pulses for coherent optical communications. Optics Express, 2012, 20, 8397.	3.4	40
5	Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL. Optics Express, 2012, 20, 19599.	3.4	36
6	1.00 (0.88) Tb/s per Wave Capable Coherent Multi-Channel Transmitter (Receiver) InP-Based PICs With Hybrid Integrated SiGe Electronics. IEEE Journal of Quantum Electronics, 2018, 54, 1-10.	1.9	25
7	Time Domain Hybrid QAM Based Rate-Adaptive Optical Transmissions Using High Speed DACs., 2013,,.		25
8	Subcarrier Multiplexing Using DACs for Fiber Nonlinearity Mitigation in Coherent Optical Communication Systems. , 2014, , .		25
9	Analysis and experimental demonstration of novel 8PolSK-QPSK modulation at 5 bits/symbol for passive mitigation of nonlinear impairments. Optics Express, 2013, 21, 30204.	3.4	24
10	Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing. Optics Express, 2014, 22, 2278.	3.4	23
11	Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario. Optics Express, 2014, 22, 5693.	3.4	22
12	Experimental investigation of the equalization-enhanced phase noise in long haul 56 Gbaud DP-QPSK systems. Optics Express, 2012, 20, 13841.	3.4	20
13	Decision-aided sampling frequency offset compensation for reduced-guard-interval coherent optical OFDM systems. Optics Express, 2014, 22, 27553.	3.4	19
14	Colorless and Preamplifierless Reception Using an Integrated Si-Photonic Coherent Receiver. IEEE Photonics Technology Letters, 2013, 25, 1027-1030.	2.5	16
15	Ultrafast and low overhead training symbol based channel estimation in coherent M-QAM single-carrier transmission systems. Optics Express, 2012, 20, B171.	3.4	12
16	Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems. Optics Express, 2013, 21, 8157.	3.4	10
17	A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems. Optics Express, 2013, 21, 31966.	3.4	8
18	Blind, fast and SOP independent polarization recovery for square dual polarization–MQAM formats and optical coherent receivers. Optics Express, 2012, 20, 27847.	3.4	7

#	Article	IF	CITATIONS
19	Experimental investigation on the nonlinear tolerance of root M-shaped pulse in spectrally efficient coherent transmissions. Optics Express, 2015, 23, 882.	3.4	7
20	Demonstration of Dispersion-Enhanced Phase Noise in RGI CO-OFDM Systems. IEEE Photonics Technology Letters, 2012, 24, 1446-1449.	2.5	5
21	Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM. Optics Express, 2012, 20, 8439.	3.4	5
22	Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM. Optics Express, 2014, 22, 17810.	3.4	5
23	Frequency Domain M-shaped Pulse for SPM Nonlinearity Mitigation in Coherent Optical Communications. , 2013, , .		5
24	Nonlinearity-Tolerant Frequency Domain Root M-shaped Pulse for Spectrally Efficient Coherent Transmissions. , 2014, , .		4
25	Experimental Study of the Intra-Channel Nonlinearity Influence on Single-Band 100G Coherent Optical OFDM Systems. IEEE Photonics Technology Letters, 2013, 25, 553-555.	2.5	3
26	Performance Optimization in ROADM-Enabled DWDM Systems Using Flexible Modulation Formats. , 2015, , .		3
27	Monolithically integrated L-band PICs and transceiver modules with $6\hat{l}$ » x 200 Gbps (12 Tbps) for C + L band communication systems. Optics Express, 2019, 27, 16483.	3.4	3
28	XPM penalty mitigation for a 42.7-Gb/s DQPSK channel co-propagating with 10.7-Gb/s OOK channels using SSMF and dispersion map. , 2008, , .		1
29	Flexible Transceivers Using Adaptive Digital Signal Processing for Single Carrier and OFDM., 2013,,.		1
30	8×256 Gb/s WDM Transmission Over 2880 km of SSMF with 64 Gbaud DP-QPSK Signals. , 2012, , .		1
31	Polarization dependent frequency shift induced BER penalty in DPSK demodulators. , 2009, , .		0
32	Nonlinear-Tolerant Adaptive Zero-Guard-Interval CO-OFDM for Highly Spectral Efficient Optical Transmission. , 2014, , .		0
33	Demonstration of Energy-Efficient and Format-Transparent Digital Signal Processing for Tb/s Flexible Transceiver. , 2013 , , .		0
34	Flexible Transceiver with Format-Transparent Digital Signal Processing for Ultra-large Data-rate Transmissions. , $2013, \ldots$		0