Saerona Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11927399/publications.pdf

Version: 2024-02-01

840776 1058476 14 328 11 14 citations h-index g-index papers 14 14 14 396 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Tuning the microphase behavior of carbon-precursor polymer blends with surfactant-like nanotubes: Toward catalyst support for water splitting. Chemical Engineering Journal, 2022, 431, 134027.	12.7	4
2	Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO ₂ Nanorod Arrays. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22799-22809.	8.0	13
3	Ru(II) Polypyridyl-Modified TiO ₂ Nanoparticles for Photocatalytic C–C/C–O Bond Cleavage at Room Temperature. ACS Applied Nano Materials, 2022, 5, 948-956.	5.0	9
4	Photocatalytic Chemoselective Câ \in C Bond Cleavage at Room Temperature in Dye-Sensitized Photoelectrochemical Cells. ACS Catalysis, 2021, 11, 3771-3781.	11.2	35
5	Electrical monitoring of photoisomerization of block copolymers intercalated into graphene sheets. Nature Communications, 2020, 11, 1324.	12.8	17
6	Single-Walled Carbon Nanotube-in-Binary-Polymer Nanofiber Structures and Their Use as Carbon Precursors for Electrochemical Applications. Journal of Physical Chemistry C, 2018, 122, 4189-4198.	3.1	17
7	Physical exfoliation of graphene and molybdenum disulfide sheets using conductive polyaniline: an efficient route for synthesizing unique, random-layered 3D ternary electrode materials. New Journal of Chemistry, 2018, 42, 17379-17388.	2.8	25
8	Single-walled carbon nanotube-mediated physical gelation of binary polymer blends: An efficient route to versatile porous carbon electrode materials. Chemical Engineering Journal, 2018, 353, 849-857.	12.7	10
9	Graphene-Embedded Hydrogel Nanofibers for Detection and Removal of Aqueous-Phase Dyes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10768-10776.	8.0	67
10	Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment. Nanoscale, 2017, 9, 17450-17458.	5.6	17
11	Development of Effective Porosity in Carbon Nanofibers Based on Phase Behavior of Ternary Polymer Blend Precursors: Toward High-Performance Electrode Materials. Journal of Physical Chemistry C, 2017, 121, 18480-18489.	3.1	13
12	A Solution-Processable, Nanostructured, and Conductive Graphene/Polyaniline Hybrid Coating for Metal-Corrosion Protection and Monitoring. Scientific Reports, 2017, 7, 15184.	3.3	29
13	Tunable Electrical-Sensing Performance of Random-Alternating Layered Graphene/Polyaniline Nanoarchitectures. Journal of Physical Chemistry C, 2016, 120, 18289-18295.	3.1	17
14	Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors. Scientific Reports, 2016, 6, 33724.	3.3	55