
Harald Jueppner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1192670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nature Genetics, 2005, 37, 25-27.	21.4	321
2	Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. Journal of Clinical Investigation, 2003, 112, 1255-1263.	8.2	226
3	Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nature Reviews Endocrinology, 2018, 14, 476-500.	9.6	224
4	Paternal Uniparental Isodisomy of Chromosome 20q—and the Resulting Changes in GNAS1 Methylation—as a Plausible Cause of Pseudohypoparathyroidism. American Journal of Human Genetics, 2001, 68, 1283-1289.	6.2	198
5	A Novel STX16 Deletion in Autosomal Dominant Pseudohypoparathyroidism Type Ib Redefines the Boundaries of a cis-Acting Imprinting Control Element of GNAS. American Journal of Human Genetics, 2005, 76, 804-814.	6.2	185
6	Epigenetic Defects ofGNASin Patients with Pseudohypoparathyroidism and Mild Features of Albright's Hereditary Osteodystrophy. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2370-2373.	3.6	157
7	Phosphate and FGF-23. Kidney International, 2011, 79, S24-S27.	5.2	150
8	FGF-23: More than a regulator of renal phosphate handling?. Journal of Bone and Mineral Research, 2010, 25, 2091-2097.	2.8	141
9	Deletion of the Noncoding <i>GNAS</i> Antisense Transcript Causes Pseudohypoparathyroidism Type Ib and Biparental Defects of <i>GNAS</i> Methylation <i>in cis</i> . Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3993-4002.	3.6	113
10	Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the <i>GNAS</i> locus. Clinical Endocrinology, 2007, 67, 822-831.	2.4	98
11	Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 171-180.	5.7	78
12	A Homozygous [Cys25]PTH(1-84) Mutation That Impairs PTH/PTHrP Receptor Activation Defines a Novel Form of Hypoparathyroidism. Journal of Bone and Mineral Research, 2015, 30, 1803-1813.	2.8	63
13	Targeted deletion of the Nesp55 DMR defines another <i>Gnas</i> imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9275-9280.	7.1	55
14	PSEUDOHYPOPARATHYROIDISM. Endocrinology and Metabolism Clinics of North America, 2000, 29, 569-589.	3.2	49
15	Molecular Diagnosis of Pseudohypoparathyroidism Type Ib in a Family With Presumed Paroxysmal Dyskinesia. Pediatrics, 2005, 115, e242-e244.	2.1	48
16	Caffey disease: New perspectives on old questions. Bone, 2014, 60, 246-251.	2.9	45
17	Similar frequency of paternal uniparental disomy involving chromosome 20q (patUPD20q) in Japanese and Caucasian patients affected by sporadic pseudohypoparathyroidism type lb (sporPHP1B). Bone, 2015, 79, 15-20.	2.9	41
18	Genetic and Epigenetic Defects at the GNAS Locus Lead to Distinct Patterns of Skeletal Growth but Similar Early-Onset Obesity. Journal of Bone and Mineral Research, 2018, 33, 1480-1488.	2.8	41

HARALD JUEPPNER

#	Article	IF	CITATIONS
19	Novel Regulators of Phosphate Homeostasis and Bone Metabolism. Therapeutic Apheresis and Dialysis, 2007, 11, S3-22.	0.9	37
20	Exclusion of the <i>CNAS</i> locus in PHP-lb patients with broad <i>CNAS</i> methylation changes: Evidence for an autosomal recessive form of PHP-lb?. Journal of Bone and Mineral Research, 2011, 26, 1854-1863.	2.8	34
21	<i>De Novo</i> STX16 Deletions: An Infrequent Cause of Pseudohypoparathyroidism Type Ib that Should Be Excluded in Sporadic Cases. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E2314-E2319.	3.6	32
22	Molecular Definition of Pseudohypoparathyroidism Variants. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1541-1552.	3.6	32
23	Analysis of Multiple Families With Single Individuals Affected by Pseudohypoparathyroidism Type Ib (PHP1B) Reveals Only One Novel Maternally Inherited <i>GNAS</i> Deletion. Journal of Bone and Mineral Research, 2016, 31, 796-805.	2.8	31
24	Loss of Methylation at GNAS Exon A/B Is Associated With Increased Intrauterine Growth. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E623-E631.	3.6	28
25	TSH Elevations as the First Laboratory Evidence for Pseudohypoparathyroidism Type Ib (PHP-Ib). Journal of Bone and Mineral Research, 2015, 30, 906-912.	2.8	28
26	Different Mutations Within or Upstream of the GNAS Locus Cause Distinct Forms of Pseudohypoparathyroidism. Journal of Pediatric Endocrinology and Metabolism, 2006, 19, 641-6.	0.9	25
27	A Large Inversion Involving <i>GNAS</i> Exon A/B and All Exons Encoding Gsα Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). Journal of Bone and Mineral Research, 2017, 32, 776-783.	2.8	22
28	Autosomal-Dominant Pseudohypoparathyroidism Type Ib is Caused by Different Microdeletions Within or Upstream of the GNAS Locus. Annals of the New York Academy of Sciences, 2006, 1068, 250-255.	3.8	18
29	High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone, 2019, 123, 145-152.	2.9	16
30	αKlotho: FGF23 coreceptor and FGF23-regulating hormone. Journal of Clinical Investigation, 2012, 122, 4336-4339.	8.2	16
31	A Novel GNAS Duplication Associated With Loss-of-Methylation Restricted to Exon A/B Causes Pseudohypoparathyroidism Type Ib (PHP1B). Journal of Bone and Mineral Research, 2020, 36, 546-552.	2.8	8
32	Pseudohypoparathyroidism type 1B associated with assisted reproductive technology. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 1125-1132.	0.9	7
33	A Heterozygous Splice-Site Mutation in <i>PTHLH</i> Causes Autosomal Dominant Shortening of Metacarpals and Metatarsals. Journal of Bone and Mineral Research, 2019, 34, 482-489.	2.8	7
34	Preferential Maternal Transmission of STX16-GNAS Mutations Responsible for Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B): Another Example of Transmission Ratio Distortion. Journal of Bone and Mineral Research, 2020, 36, 696-703.	2.8	6
35	A Novel Familial PHP1B Variant With Incomplete Loss of Methylation at GNAS-A/B and Enhanced Methylation at <i>GNAS-AS2</i> . Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2779-2787.	3.6	6
36	Mice maintain predominantly maternal Gαs expression throughout life in brown fat tissue (BAT), but not other tissues. Bone, 2017, 103, 177-187.	2.9	5

#	Article	IF	CITATIONS
37	Lack of <i>GNAS</i> Remethylation During Oogenesis May Be a Cause of Sporadic Pseudohypoparathyroidism Type Ib. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1610-e1619.	3.6	5
38	Progression of PTH Resistance in Autosomal Dominant Pseudohypoparathyroidism Type Ib Due to Maternal <i>STX16</i> Deletions. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e681-e687.	3.6	3
39	A Distinct Variant of Pseudohypoparathyroidism (<scp>PHP</scp>) First Characterized Some 41 Years Ago Is Caused by the 3â€ <scp>kb</scp> <i>STX16</i> Deletion. JBMR Plus, 2021, 5, e10505.	2.7	1
40	A novel deletion involving the first GNAS exon encoding Gsl \pm causes PHP1A without methylation changes at exon A/B. Bone, 2022, 157, 116344.	2.9	0