## Qingning Li

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1192669/publications.pdf

Version: 2024-02-01

|          |                | 623574       | 552653         |
|----------|----------------|--------------|----------------|
| 35       | 694            | 14           | 26             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 0.5      | 0.7            | 0.5          |                |
| 35       | 35             | 35           | 629            |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                                         | IF  | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Giant strain with ultra-low hysteresis by tailoring relaxor temperature and PNRs dynamic in BNT-based lead-free piezoelectric ceramics. Ceramics International, 2022, 48, 13125-13133.                                                          | 2.3 | 15        |
| 2  | Incipient piezoelectricity boosts large strain with excellent thermal stability in (Bi0.5Na0.5)TiO3-based ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 6121-6130.                                                | 1.1 | 7         |
| 3  | Enhanced field-induced-strain by maximizing reversible domain switching contribution via eliminating negative strain in (Na0.5Bi0.5)TiO3-based ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 6802.                | 1.1 | 3         |
| 4  | Large electrostrictive coefficient with optimized Electro-Strain in BNT-based ceramics with ergodic state. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115828.                               | 1.7 | 5         |
| 5  | Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectric-relaxor transition in BiFeO3–BaTiO3 ceramics by in-situ process. Journal of Materials Science: Materials in Electronics, 2021, 32, 1197-1203. | 1.1 | 8         |
| 6  | BiO·5NaO·5TiO3–SrO.85BiO·1TiO3 ceramics with high energy storage properties and extremely fast discharge speed via regulating relaxation temperature. Ceramics International, 2021, 47, 11294-11303.                                            | 2.3 | 27        |
| 7  | Nonergodic–ergodic relaxor transition and enhanced piezoelectric properties in B-site complex ions substitution 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 24308-24319.          | 1.1 | 4         |
| 8  | Formation mechanism, dielectric properties, and energy-storage density in LiNbO3-doped Na0.47Bi0.47Ba0.06TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 13368-13375.                                          | 1.1 | 5         |
| 9  | Structures and microwave dielectric behavior of Sr0.1Ca0.9TiO3–Bi0.1Na0.1Li0.4Sm0.4TiO3 ceramic system. Journal of Materials Science: Materials in Electronics, 2019, 30, 14554-14561.                                                          | 1.1 | 0         |
| 10 | An intermediate metastable ferroelectric state induced giant functional responses in Bi <sub>0.5</sub> Na <sub>0.5</sub> TiO <sub>3</sub> ceramics. Journal of Materials Chemistry C, 2019, 7, 8255-8260.                                       | 2.7 | 9         |
| 11 | Concurrent anomalies in electric field-temperature dependence of direct/converse piezoelectric response in Bi0.5Na0.5TiO3-BaTiO3. Journal of Alloys and Compounds, 2019, 793, 9-15.                                                             | 2.8 | O         |
| 12 | Enhanced electrical properties in donor–acceptor co-doped Ba(Ti0.92Sn0.08)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 8712-8720.                                                                             | 1.1 | 2         |
| 13 | Dielectric behaviors and relaxor characteristics in Bi0.5Na0.5TiO3-BaTiO3 ceramics. Journal of Advanced Dielectrics, 2019, 09, 1950038.                                                                                                         | 1.5 | 4         |
| 14 | Temperature-driven phase transitions and enhanced piezoelectric responses in Ba(Ti0.92Sn0.08)O3 lead-free ceramic. Ceramics International, 2019, 45, 4461-4466.                                                                                 | 2.3 | 5         |
| 15 | Unusual dynamic polarization response and scaling behaviors in Bi1/2Na1/2TiO3 ceramics. Materials Research Bulletin, 2019, 109, 134-140.                                                                                                        | 2.7 | 6         |
| 16 | Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics. Ceramics International, 2018, 44, 8955-8962.                                                                                         | 2.3 | 42        |
| 17 | Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics. Journal of Materials Science, 2018, 53, 8844-8854.                                                                                  | 1.7 | 27        |
| 18 | Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3-BaTiO3 ceramics. Journal of Alloys and Compounds, 2018, 748, 758-765.                                                                   | 2.8 | 23        |

| #  | Article                                                                                                                                                                                                                                          | IF         | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 19 | Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics. Journal of the European Ceramic Society, 2018, 38, 1356-1366.                                                                | 2.8        | 65        |
| 20 | Microwave dielectric properties of (1-x) BiVO4–xLn2/3MoO4 (Ln=Er, Sm, Nd, Ia) ceramics with low sintering temperatures. Journal of Electroceramics, 2018, 40, 99-106.                                                                            | 0.8        | 2         |
| 21 | Ferroelectricâ€quasiferroelectricâ€ergodic relaxor transition and multifunctional electrical properties in Bi <sub>0.5</sub> Na <sub>0.5</sub> TiO <sub>3</sub> â€based ceramics. Journal of the American Ceramic Society, 2018, 101, 1554-1565. | 1.9        | 51        |
| 22 | Enhanced real-time high temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7BiFeO3-0.3BaTiO3 ceramics. Ceramics International, 2018, 44, 14439-14445.                                                        | 2.3        | 24        |
| 23 | Effects of thermal and electrical histories on structure and dielectric behaviors of (Li 0.5 Nd 0.5 ) 2+-modified (Bi 0.5 Na 0.5 )TiO 3 -BaTiO 3 ceramics. Journal of Materiomics, 2017, 3, 121-129.                                             | 2.8        | 9         |
| 24 | Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF-BT ceramics by in situ and ex situ measuring. Ceramics International, 2017, 43, 3734-3740.                                                                          | 2.3        | 31        |
| 25 | Effect of domains configuration on crystal structure in ferroelectric ceramics as revealed by XRD and dielectric spectrum. Bulletin of Materials Science, 2017, 40, 1159-1163.                                                                   | 0.8        | 0         |
| 26 | Effects of Bi3+ substitution on microwave dielectric properties of (Ce1 $\hat{a}$ 'x Bi x )0.2Sr0.7TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 9941-9949.                                                   | 1.1        | 4         |
| 27 | A new insight into structural complexity in ferroelectric ceramics. Journal of Advanced Ceramics, 2017, 6, 262-268.                                                                                                                              | 8.9        | 6         |
| 28 | High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics. Journal of Electroceramics, 2016, 37, 23-28.                                                                 | 0.8        | 2         |
| 29 | Microstructures and microwave dielectric properties of Mg+1Ti O3+1 ceramics with ultralow dielectric loss. Materials Letters, 2016, 185, 432-435.                                                                                                | 1.3        | 7         |
| 30 | Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3–BaTiO3 ceramics by modulating Bi/Na ratio. Journal of Materials Science: Materials in Electronics, 2016, 27, 10810-10815.                                   | 1.1        | 34        |
| 31 | High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion. Journal of Alloys and Compounds, 2016, 666, 209-216.                                                           | 2.8        | 75        |
| 32 | Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. Journal of Materiomics, 2016, 2, 87-93.                                                                                              | 2.8        | 63        |
| 33 | High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1â^x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceramics International, 2016, 42, 2221-2226.                                                             | 2.3        | 79        |
| 34 | Energy storage properties and electrical behavior of lead-free (1Ââ°'Âx) Ba0.04Bi0.48Na0.48TiO3–xSrZrO3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 3948-3956.                                                   | 1.1        | 40        |
| 35 | Microstructures and energy-storage properties of (1Ââ^'Âx)(Na0.5Bi0.5)TiO3â€"xBaTiO3 with BaOâ€"B2O3â€"S<br>additions. Journal of Materials Science: Materials in Electronics, 2015, 26, 5113-5119.                                              | iO2<br>1.1 | 10        |