Michal Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11924940/publications.pdf Version: 2024-02-01

MICHAL ODEEN

#	Article	IF	CITATIONS
1	Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chemical Engineering Journal, 2015, 279, 372-378.	6.6	192
2	High-Rate Nitrification at Low pH in Suspended- and Attached-Biomass Reactors. Applied and Environmental Microbiology, 2004, 70, 6481-6487.	1.4	91
3	Biodegradation Kinetics of Hydrocarbons in Soil during Land Treatment of Oily Sludge. Bioremediation Journal, 2001, 5, 193-209.	1.0	75
4	Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal. Chemosphere, 2018, 200, 380-387.	4.2	75
5	Nitrification in a Biofilm at Low pH Values: Role of In Situ Microenvironments and Acid Tolerance. Applied and Environmental Microbiology, 2006, 72, 4283-4292.	1.4	74
6	Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump. Water Research, 1998, 32, 3513-3520.	5.3	59
7	Atrazine degradation under denitrifying conditions in continuous culture of Pseudomonas ADP. Water Research, 2001, 35, 3272-3275.	5.3	43
8	Ammonium removal using a novel unsaturated flow biological filter with passive aeration. Water Research, 2001, 35, 397-404.	5.3	39
9	Patchy Biofilm Coverage Can Explain the Potential Advantage of BGAC Reactors. Environmental Science & Technology, 2003, 37, 4274-4280.	4.6	39
10	Constructed wetlands for river reclamation: Experimental design, start-up and preliminary results. Bioresource Technology, 1996, 55, 157-162.	4.8	36
11	Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1605-1613.	1.4	33
12	Characterization of atrazine degradation and nitrate reduction by Pseudomonas sp. strain ADP. Journal of Environmental Management, 2000, 4, 211-218.	1.7	32
13	Minimizing land requirement and evaporation in small wastewater treatment systems. Ecological Engineering, 2006, 26, 266-271.	1.6	31
14	Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal. Bioresource Technology, 2014, 171, 291-297.	4.8	28
15	PHA based denitrification: Municipal wastewater vs. acetate. Bioresource Technology, 2013, 132, 28-37.	4.8	27
16	High-rate hydrogenotrophic denitrification in a pressurized reactor. Chemical Engineering Journal, 2016, 286, 578-584.	6.6	23
17	The effect of CO2 concentration on a nitrifying chalk reactor. Water Research, 2002, 36, 2147-2151.	5.3	18
18	Chalk as the carrier for nitrifying biofilm in a fluidized bed reactor. Water Research, 2001, 35, 284-290.	5.3	17

MICHAL GREEN

#	Article	IF	CITATIONS
19	Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1. Water Research, 2006, 40, 2704-2712.	5.3	16
20	Simultaneous removal of atrazine and nitrate using a biological granulated activated carbon(BGAC) reactor. Journal of Chemical Technology and Biotechnology, 2004, 79, 626-631.	1.6	13
21	Increased biofilm activity in BGAC reactors. AICHE Journal, 2005, 51, 1042-1047.	1.8	11
22	Long-Term Atrazine Degradation with Microtube-Encapsulated <i>Pseudomonas</i> sp. Strain ADP. Environmental Engineering Science, 2016, 33, 167-175.	0.8	10
23	Pressurized hydrogenotrophic denitrification reactor for small water systems. Journal of Environmental Management, 2018, 216, 315-319.	3.8	10
24	Durable electrospun microtubes for encapsulation of bacteria in atrazine bioremediation. Journal of Water Process Engineering, 2017, 19, 205-211.	2.6	9
25	Minimizing brine discharge in a combined biophysical system for nitrate removal from inland groundwater. Separation and Purification Technology, 2015, 156, 496-501.	3.9	7
26	Simplified model for hydrogenotrophic denitrification in an unsaturated-flow pressurized reactor. Chemical Engineering Journal, 2016, 306, 233-241.	6.6	7
27	Stability of a mixed microbial population in a biological reactor during long term atrazine degradation under carbon limiting conditions. International Biodeterioration and Biodegradation, 2017, 123, 311-319.	1.9	7
28	Co-reduction of nitrate and perchlorate in a pressurized hydrogenotrophic reactor with complete H2 utilization. Chemical Engineering Journal, 2017, 328, 133-140.	6.6	6
29	A pressurized hydrogenotrophic denitrification reactor system for removal of nitrates at high concentrations. Journal of Water Process Engineering, 2021, 42, 102140.	2.6	6
30	Evaluation of a pilot plant for removal of nitrate from groundwater using ion exchange and recycled regenerant. Water Practice and Technology, 2017, 12, 541-548.	1.0	5
31	A simple model describing nitrate and nitrite reduction in fluidized bed biological reactors. , 1997, 54, 543-548.		4
32	Mineralization of organic N originating in treated effluent used for irrigation. Nutrient Cycling in Agroecosystems, 2003, 67, 205-213.	1.1	4
33	High Nitrification Rate at Low pH in a Fluidized Bed Reactor with either Chalk or Sintered Glass as the Biofilm Carrier. Israel Journal of Chemistry, 2006, 46, 53-58.	1.0	4
34	The contribution of suspended solids to municipal wastewater PHA-based denitrification. Environmental Technology (United Kingdom), 2014, 35, 313-321.	1.2	4
35	Modeling the Aeration Efficiency of a Passively Aerated Vertical-Flow Biological Filter. Journal of Environmental Engineering, ASCE, 2007, 133, 970-978.	0.7	3
36	Submerged bed versus unsaturated flow reactor: A pressurized hydrogenotrophic denitrification reactor as a case study. Chemosphere, 2016, 161, 151-156.	4.2	3

#	Article	IF	CITATIONS
37	Storage-based denitrification with municipal wastewater: influence of the denitrification stage duration. Environmental Technology (United Kingdom), 2014, 35, 2167-2175.	1.2	2