Riddhi Datta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1192261/publications.pdf

Version: 2024-02-01

840776 794594 20 425 11 19 citations h-index g-index papers 24 24 24 612 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Glutathione regulates ACC synthase transcription via WRKY33 and ACC oxidase by modulating mRNA stability to induce ethylene synthesis during stress. Plant Physiology, 2015, 169, pp.01543.2015.	4.8	95
2	Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. Journal of Plant Physiology, 2014, 171, 940-950.	3.5	54
3	De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics, 2013, 14, 748.	2.8	43
4	Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Scientific Reports, 2016, 6, 36867.	3.3	32
5	Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress. PLoS ONE, 2015, 10, e0122690.	2.5	25
6	Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell, Tissue and Organ Culture, 2015, 120, 975-988.	2.3	20
7	Rice lectin protein r40c1 imparts drought tolerance by modulating <i>S</i> -adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. Journal of Experimental Botany, 2020, 71, 7331-7346.	4.8	20
8	Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid. Journal of Biosciences, 2013, 38, 317-328.	1.1	18
9	Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Molecular Biology, 2016, 92, 1-23.	3.9	18
10	Long non-coding RNAs: Fine-tuning the developmental responses in plants. Journal of Biosciences, 2019, 44, 1.	1.1	17
11	Leaf proteome profiling of transgenic mint infected with Alternaria alternata. Journal of Proteomics, 2013, 93, 117-132.	2.4	14
12	Proteomic profiling of $\hat{I}^{3-\langle i\rangle}$ ECS $\langle i\rangle$ overexpressed transgenic $\langle i\rangle$ Nicotiana $\langle i\rangle$ in response to drought stress. Plant Signaling and Behavior, 2014, 9, e29246.	2.4	12
13	Plant microRNAs: master regulator of gene expression mechanism. Cell Biology International, 2015, 39, 1185-1190.	3.0	9
14	Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. Journal of Proteomics, 2015, 126, 82-93.	2.4	9
15	Long non-coding RNAs: Fine-tuning the developmental responses in plants. Journal of Biosciences, 2019, 44, .	1.1	8
16	Glutathione regulates transcriptional activation of iron transporters via ⟨i⟩S⟨ i⟩â€nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. Plant, Cell and Environment, 2022, 45, 2176-2190.	5.7	8
17	Jacalin domain-containing protein OsSalT interacts with OsDREB2A and OsNAC1 to impart drought stress tolerance in planta. Environmental and Experimental Botany, 2021, 183, 104362.	4.2	7
18	Exploitation of a new Schiff-base ligand for boric acid fluorescent sensing in aqueous medium with bio-imaging studies in a living plant system. RSC Advances, 2015, 5, 51875-51882.	3.6	6

RIDDHI DATTA

#	Article	IF	CITATIONS
19	Membrane proteome profiling of <i>Mentha arvensis</i> leaves in response to <i>Alternaria alternata</i> infection identifies crucial candidates for defense response. Plant Signaling and Behavior, 2018, 13, e1178423.	2.4	5
20	Networking by Small Molecule Hormones during Drought Stress in Plants. , 2020, , 203-228.		3