
Fatima Valdes-Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1192182/publications.pdf Version: 2024-02-01

EATIMA VALDES-MODA

#	Article	IF	CITATIONS
1	The H2A.Z-nucleosome code in mammals: emerging functions. Trends in Genetics, 2022, 38, 273-289.	2.9	23
2	Disentangling single-cell omics representation with a power spectral density-based feature extraction. Nucleic Acids Research, 2022, 50, 5482-5492.	6.5	4
3	Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Reports, 2021, 35, 108945.	2.9	38
4	Tumor dissociation of highly viable cell suspensions for single-cell omic analyses in mouse models of breast cancer. STAR Protocols, 2021, 2, 100841.	0.5	10
5	Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nature Communications, 2020, 11, 54.	5.8	72
6	Genomic Cytometry and New Modalities for Deep Single ell Interrogation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1007-1016.	1.1	2
7	Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	3.5	16
8	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	1.8	281
9	Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer. Nature Communications, 2020, 11, 320.	5.8	103
10	Droplet-based single cell RNAseq tools: a practical guide. Lab on A Chip, 2019, 19, 1706-1727.	3.1	77
11	A Read/Write Mechanism Connects p300 Bromodomain Function to H2A.Z Acetylation. IScience, 2019, 21, 773-788.	1.9	16
12	Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Frontiers in Immunology, 2018, 9, 2582.	2.2	47
13	Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nature Communications, 2017, 8, 1346.	5.8	68
14	Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene, 2017, 36, 1328-1338.	2.6	59
15	Clinical relevance of the transcriptional signature regulated by CDC42 in colorectal cancer. Oncotarget, 2017, 8, 26755-26770.	0.8	12
16	H2A.Z acetylation and transcription: ready, steady, go!. Epigenomics, 2016, 8, 583-586.	1.0	11
17	Single-Cell Genomics and Epigenomics. Series in Bioengineering, 2016, , 257-301.	0.3	2
18	Prostate cancer epigenetic biomarkers: next-generation technologies. Oncogene, 2015, 34, 1609-1618.	2.6	44

Fatima Valdes-Mora

#	Article	IF	CITATIONS
19	ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biology, 2015, 13, e1002330.	2.6	59
20	BCL-2 Hypermethylation Is a Potential Biomarker of Sensitivity to Antimitotic Chemotherapy in Endocrine-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2013, 12, 1874-1885.	1.9	45
21	Exploring and exploiting the aberrant DNA methylation profile of endocrine-resistant breast cancer. Epigenomics, 2013, 5, 595-598.	1.0	8
22	ELF5 Suppresses Estrogen Sensitivity and Underpins the Acquisition of Antiestrogen Resistance in Luminal Breast Cancer. PLoS Biology, 2012, 10, e1001461.	2.6	74
23	Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Research, 2012, 22, 307-321.	2.4	155
24	Tamoxifen-Induced Epigenetic Silencing of Oestrogen-Regulated Genes in Anti-Hormone Resistant Breast Cancer. PLoS ONE, 2012, 7, e40466.	1.1	54
25	Involvement of human choline kinase alpha and beta in carcinogenesis: A different role in lipid metabolism and biological functions. Advances in Enzyme Regulation, 2011, 51, 183-194.	2.9	51
26	Lineage Specific Methylation of the <i>Elf5</i> Promoter in Mammary Epithelial Cells. Stem Cells, 2011, 29, 1611-1619.	1.4	39
27	TWIST1 Overexpression is Associated with Nodal Invasion and Male Sex in Primary Colorectal Cancer. Annals of Surgical Oncology, 2009, 16, 78-87.	0.7	68
28	Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment. PLoS ONE, 2009, 4, e7819.	1.1	88
29	Differential expression of Rac1 identifies its target genes and its contribution to progression of colorectal cancer. International Journal of Biochemistry and Cell Biology, 2007, 39, 2289-2302.	1.2	27
30	Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. International Journal of Oncology, 0, , .	1.4	37