Alan Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11921521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Safe, Fibrosisâ€Mitigating, and Scalable Encapsulation Device Supports Longâ€Term Function of Insulinâ€Producing Cells. Small, 2022, 18, e2104899.	5.2	17
2	A Zwitterionic Polyurethane Nanoporous Device with Low Foreignâ€Body Response for Islet Encapsulation. Advanced Materials, 2021, 33, e2102852.	11.1	29
3	Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation. Biomaterials, 2020, 230, 119640.	5.7	58
4	An Adhesive Hydrogel with "Loadâ€Sharing―Effect as Tissue Bandages for Drug and Cell Delivery. Advanced Materials, 2020, 32, e2001628.	11.1	128
5	Physical confinement induces malignant transformation in mammary epithelial cells. Biomaterials, 2019, 217, 119307.	5.7	13
6	Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nature Communications, 2019, 10, 4602.	5.8	63
7	An Atmosphereâ€Breathing Refillable Biphasic Device for Cell Replacement Therapy. Advanced Materials, 2019, 31, e1905135.	11.1	25
8	Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nature Communications, 2019, 10, 5262.	5.8	119
9	Conformal Hydrogel Coatings on Catheters To Reduce Biofouling. Langmuir, 2019, 35, 1927-1934.	1.6	45
10	Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E263-E272.	3.3	137
11	High-water-content and resilient PEG-containing hydrogels with low fibrotic response. Acta Biomaterialia, 2017, 53, 100-108.	4.1	47
12	Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-humanÂprimates. Nature Materials, 2017, 16, 671-680.	13.3	214
13	Scalable Production and Cryostorage of Organoids Using Core–Shell Decoupled Hydrogel Capsules. Advanced Biology, 2017, 1, 1700165.	3.0	38
14	Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature Biotechnology, 2016, 34, 345-352.	9.4	417
15	Neutrophil Responses to Sterile Implant Materials. PLoS ONE, 2015, 10, e0137550.	1.1	92
16	Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 2015, 14, 643-651.	13.3	700
17	Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. NeuroReport, 2015, 26, 211-215.	0.6	114
18	Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials, 2015, 37, 40-48.	5.7	81

Alan Chiu

#	Article	IF	CITATIONS
19	Estimation of the spatial profile of neuromodulation and the temporal latency in motor responses induced by focused ultrasound brain stimulation. NeuroReport, 2014, 25, 475-479.	0.6	63
20	Focused Ultrasound-mediated Non-invasive Brain Stimulation: Examination of Sonication Parameters. Brain Stimulation, 2014, 7, 748-756.	0.7	239
21	PET/CT imaging evidence of FUSâ€mediated (18)Fâ€FDG uptake changes in rat brain. Medical Physics, 2013, 40, 033501.	1.6	32
22	Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation. Advanced Healthcare Materials, 2013, 2, 667-672.	3.9	141
23	Cell Delivery: Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation (Adv. Healthcare) Tj ETQq1	1	4 ₄ rgBT /Ove
24	Imageâ€guided navigation of singleâ€element focused ultrasound transducer. International Journal of Imaging Systems and Technology, 2012, 22, 177-184.	2.7	38