Keng-Ku Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11919440/keng-ku-liu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 5,484 27 47 g-index

47 6,034 9.5 5.43 ext. papers ext. citations avg, IF L-index

#	Paper Paper	IF	Citations
42	Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2021 , 13, 11414-11423	9.5	6
41	Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. <i>Environmental Science & Environmental Scie</i>	- 1 27	39
40	Shape-Dependent Biodistribution of Biocompatible Silk Microcapsules. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5499-5508	9.5	20
39	Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane. Small, 2018, 14, e1704006	11	45
38	Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2018 , 12, 452-460	5.1	2
37	Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose <i>RSC Advances</i> , 2018 , 8, 31296-31302	3.7	48
36	Add-on plasmonic patch as a universal fluorescence enhancer. <i>Light: Science and Applications</i> , 2018 , 7, 29	16.7	43
35	Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. <i>ACS Applied Materials & Desalination</i> , 9, 7675-7681	9.5	388
34	An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13976-13982	13	42
33	Influence of Surface Charge of the Nanostructures on the Biocatalytic Activity. <i>Langmuir</i> , 2017 , 33, 661	I ₂ 6619	11
32	Metal-Organic Framework as a Protective Coating for Biodiagnostic Chips. <i>Advanced Materials</i> , 2017 , 29, 1604433	24	44
31	Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. <i>Nano Letters</i> , 2017 , 17, 7569-7577	11.5	41
30	Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. <i>Analyst, The</i> , 2017 , 142, 4536-4543	5	6
29	Silk-Encapsulated Plasmonic Biochips with Enhanced Thermal Stability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26493-26500	9.5	15
28	Bilayered Biofoam for Highly Efficient Solar Steam Generation. <i>Advanced Materials</i> , 2016 , 28, 9400-9407	724	372
27	Foams: Bilayered Biofoam for Highly Efficient Solar Steam Generation (Adv. Mater. 42/2016). <i>Advanced Materials</i> , 2016 , 28, 9234-9234	24	12
26	Plasmonic Biofoam: A Versatile Optically Active Material. <i>Nano Letters</i> , 2016 , 16, 609-16	11.5	140

(2012-2016)

25	Plasmonic Nanogels for Unclonable Optical Tagging. <i>ACS Applied Materials & Description</i> 1975, 8, 4031-41	9.5	29
24	Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. <i>RSC Advances</i> , 2016 , 6, 4136-4144	3.7	19
23	Bacterial Nanocellulose-Based Flexible Surface Enhanced Raman Scattering Substrate. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600214	4.6	49
22	Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16899-16906	3.8	14
21	Elastoplastic Deformation of Silk Micro- and Nanostructures. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 893-899	5.5	5
20	PEGylated Artificial Antibodies: Plasmonic Biosensors with Improved Selectivity. <i>ACS Applied Materials & Discourt Materials & Discourt</i>	9.5	34
19	Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2016 , 10, 963-971	5.1	9
18	Size-Dependent Surface Enhanced Raman Scattering Activity of Plasmonic Nanorattles. <i>Chemistry of Materials</i> , 2015 , 27, 5261-5270	9.6	61
17	Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 11117-26	9.5	54
16	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. <i>Scientific Reports</i> , 2015 , 5, 16206	4.9	63
15	Bioplasmonic calligraphy for multiplexed label-free biodetection. <i>Biosensors and Bioelectronics</i> , 2014 , 59, 208-15	11.8	23
14	Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 167-170	7.3	30
13	Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. Journal of Materials Chemistry C, 2014 , 2, 5438	7.1	33
12	Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering. <i>Small</i> , 2014 , 10, 4287-92	11	55
11	Label-Free Electrical Detection of DNA Hybridization on Graphene using Hall Effect Measurements: Revisiting the Sensing Mechanism. <i>Advanced Functional Materials</i> , 2013 , 23, 2301-2307	15.6	94
10	Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. <i>ACS Nano</i> , 2013 , 7, 3905-11	16.7	482
9	Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. <i>RSC Advances</i> , 2012 , 2, 111-115	3.7	66
8	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. <i>Nanoscale</i> , 2012 , 4, 6637-41	7.7	538

7	Highly flexible MoS2 thin-film transistors with ion gel dielectrics. <i>Nano Letters</i> , 2012 , 12, 4013-7	11.5	663
6	Electrical probing of submicroliter liquid using graphene strip transistors built on a nanopipette. <i>Small</i> , 2012 , 8, 43-6	11	31
5	Efficient reduction of graphene oxide catalyzed by copper. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 3083-8	3.6	11
4	Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. <i>Nano Letters</i> , 2012 , 12, 1538-44	11.5	1552
3	Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. <i>Nano Letters</i> , 2011 , 11, 3612-6	11.5	254
2	Transfer printing of graphene strip from the graphene grown on copper wires. <i>Nanotechnology</i> , 2011 , 22, 185309	3.4	26
1	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices		15