
Suhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11919148/publications.pdf Version: 2024-02-01

SUHAS

#	Article	IF	CITATIONS
1	Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 2009, 90, 2313-2342.	3.8	2,877
2	Lignin – from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98, 2301-2312.	4.8	882
3	Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Critical Reviews in Environmental Science and Technology, 2009, 39, 783-842.	6.6	873
4	Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 2016, 216, 1066-1076.	4.8	538
5	Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 2003, 101, 31-42.	6.5	434
6	A Comparative Study of Adsorbents Prepared from Industrial Wastes for Removal of Dyes. Separation Science and Technology, 2003, 38, 463-481.	1.3	374
7	Removal of Rhodamine B, Fast Green, and Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste. Industrial & Engineering Chemistry Research, 2004, 43, 1740-1747.	1.8	367
8	Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. Journal of Colloid and Interface Science, 2003, 265, 257-264.	5.0	334
9	Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, 2006, 299, 556-563.	5.0	252
10	Removal of Chlorophenols Using Industrial Wastes. Environmental Science & Technology, 2004, 38, 1195-1200.	4.6	241
11	Removal of Ni (II) ions from water using scrap tire. Journal of Molecular Liquids, 2014, 190, 215-222.	2.3	121
12	Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. Journal of Hazardous Materials, 2009, 167, 904-910.	6.5	76
13	Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. Journal of Analytical and Applied Pyrolysis, 2008, 82, 264-271.	2.6	73
14	Methylphenols Removal from Water by Low-Cost Adsorbents. Journal of Colloid and Interface Science, 2002, 251, 39-45.	5.0	59
15	Removal of 2-Aminophenol Using Novel Adsorbents. Industrial & Engineering Chemistry Research, 2006, 45, 1113-1122.	1.8	38
16	An innovative approach to develop microporous activated carbons in oxidising atmosphere. Journal of Cleaner Production, 2017, 156, 549-555.	4.6	35
17	Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin. Carbon, 2009, 47, 1012-1017.	5.4	33
18	A novel approach to develop activated carbon by an ingenious hydrothermal treatment methodology using Phyllanthus emblica fruit stone. Journal of Cleaner Production, 2021, 288, 125643.	4.6	27

Suhas

#	Article	IF	CITATIONS
19	Comparison of the Dubinin–Radushkevich and Quenched Solid Density Functional Theory approaches for the characterisation of narrow microporosity in activated carbons obtained by chemical activation with KOH or NaOH of Kraft and hydrolytic lignins. Carbon, 2010, 48, 4162-4169.	5.4	25
20	Utilization of Phyllanthus emblica fruitÂstone as a Potential Biomaterial for Sustainable Remediation of Lead and Cadmium Ions from Aqueous Solutions. Molecules, 2022, 27, 3355.	1.7	9
21	Removal of 2â€fluoro and 2â€iodophenol from aqueous solutions using industrial wastes. Environmental Technology (United Kingdom), 2004, 25, 15-22.	1.2	7
22	Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. Science of the Total Environment, 2022, 838, 155943.	3.9	7
23	Reactivity of Cork and Lignin for the Production of Activated Carbons. Materials Science Forum, 0, 587-588, 618-622.	0.3	5