William Bonfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11918155/publications.pdf

Version: 2024-02-01

394421 477307 1,773 32 19 29 citations h-index g-index papers 35 35 35 2173 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials, 2004, 25, 3303-3314.	11.4	231
2	The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials, 2006, 27, 2692-2698.	11.4	181
3	Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatitein vitro andin vivo. Journal of Biomedical Materials Research Part B, 2004, 69A, 670-679.	3.1	137
4	Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite. Journal of the American Ceramic Society, 2002, 85, 2771-2777.	3.8	123
5	Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials, 2005, 26, 271-283.	11.4	115
6	Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. Journal of Biomedical Materials Research Part B, 2004, 68A, 133-141.	3.1	105
7	A simple predictive model for the tensile strength of binary tablets. European Journal of Pharmaceutical Sciences, 2005, 25, 331-336.	4.0	105
8	Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2007, 18, 2151-2157.	3.6	101
9	Designing porous scaffolds for tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 227-232.	3.4	99
10	The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials, 2008, 29, 1833-1843.	11.4	68
11	Predicting the Tensile Strength of Compacted Multi-Component Mixtures of Pharmaceutical Powders. Pharmaceutical Research, 2006, 23, 1898-1905.	3.5	66
12	Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance. Materials Science and Engineering C, 2012, 32, 1222-1229.	7.3	65
13	Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions. Journal of Biomedical Materials Research - Part A, 2006, 78A, 352-363.	4.0	58
14	The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. Journal of Biomedical Materials Research - Part A, 2006, 78A, 25-33.	4.0	52
15	Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surface and Coatings Technology, 2011, 205, 3472-3477.	4.8	47
16	Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD. Journal of Materials Science: Materials in Medicine, 2005, 16, 1143-1148.	3.6	46
17	Preparation of novel bioactive nano-calcium phosphate–hydrogel composites. Science and Technology of Advanced Materials, 2010, 11, 014103.	6.1	40
18	A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance. Journal of the Royal Society Interface, 2010, 7, 189-197.	3.4	35

#	Article	IF	CITATIONS
19	A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys. Journal of the Royal Society Interface, 2010, 7, 1641-1645.	3.4	31
20	Comparison of Sintering and Mechanical Properties of Hydroxyapatite and Silicon-Substituted Hydroxyapatite. Key Engineering Materials, 2003, 240-242, 919-922.	0.4	13
21	NanoBioInterface: a multidisciplinary challenge. Journal of the Royal Society Interface, 2010, 7, S1-4.	3.4	12
22	An electrically driven jetting technique for diverse high-resolution surface structures of nanometre hydroxyapatite crystals. Colloids and Surfaces B: Biointerfaces, 2011, 82, 562-570.	5.0	11
23	The Osteogenic Behaviour of Silicon Substituted Hydroxyapatite. Key Engineering Materials, 2008, 361-363, 985-988.	0.4	8
24	Mechanism of Chromium Oxide Formation in Cobalt–Chromium–Molybdenum (F75) Alloys Prepared Using Spark Plasma Sintering. Advanced Engineering Materials, 2011, 13, 411-417.	3.5	8
25	Surface Wettability Enhances Osteoblast Adhesion on Silicon-Substituted Hydroxyapatite Thin Films. Key Engineering Materials, 2007, 330-332, 877-880.	0.4	6
26	Generation of biomaterial particles with controlled dimensions via electrospraying. Open Journal of Regenerative Medicine, $2012, 01, 10-17$.	0.9	3
27	ELECTROHYDRODYNAMIC PROCESSING OF CALCIUM PHOSPHATES: COATING AND PATTERNING FOR MEDICAL IMPLANTS. Nano LIFE, 2012, 02, 1250008.	0.9	3
28	The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo. Journal of Materials Science: Materials in Medicine, 2017, 28, 144.	3.6	3
29	A Tribute to Professor Larry Hench. Journal of Materials Science: Materials in Medicine, 2006, 17, 965-966.	3.6	1
30	Tribute Professor Andrew Keller. Journal of Materials Science, 2000, 35, 5019-5019.	3.7	0
31	Osteoblast-like Cell Response to Apatite-Wollastonite/Polyethylene Bone Replacement Composites. Materials Research Society Symposia Proceedings, 2003, 774, 7371.	0.1	0
32	Composition and Surface Topography Effects on Apatite-Forming Ability of Ceramic-Polymer Composites. Materials Research Society Symposia Proceedings, 2003, 774, 7261.	0.1	0