List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11917819/publications.pdf Version: 2024-02-01

		9756	15218
216	18,139	73	126
papers	citations	h-index	g-index
217	217	217	16768
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Developments and Understanding of Novel Mixed Transitionâ€Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502175.	10.2	756
2	Recent Advances in Layered Ti ₃ C ₂ T <i>_x</i> MXene for Electrochemical Energy Storage. Small, 2018, 14, e1703419.	5.2	729
3	Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy, 2018, 44, 111-120.	8.2	536
4	Ultrathin MoS ₂ /Nitrogenâ€Doped Graphene Nanosheets with Highly Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 839-844.	10.2	440
5	Interlayer Material Selection for Lithium-Sulfur Batteries. Joule, 2019, 3, 361-386.	11.7	406
6	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012, 22, 1647-1654.	7.8	384
7	Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy and Environmental Science, 2014, 7, 768-778.	15.6	363
8	Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. Journal of Power Sources, 2015, 274, 869-884.	4.0	343
9	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy and Environmental Science, 2013, 6, 2900.	15.6	335
10	Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011, 13, 822-825.	2.3	315
11	Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424, 108-130.	4.0	305
12	Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chemical Communications, 2011, 47, 9438.	2.2	293
13	Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31, 54-78.	7.1	275
14	Controllable Cathode–Electrolyte Interface of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Lithium Ion Batteries: A Review. Advanced Energy Materials, 2019, 9, 1901597.	10.2	273
15	Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 2011, 13, 668-672.	2.3	261
16	Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochemistry Communications, 2012, 18, 12-15.	2.3	248
17	Three-Dimensional Ordered Macroporous Metal–Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Letters, 2019, 19, 4965-4973.	4.5	246
18	Threeâ€Dimensional Porous Coreâ€5hell Sn@Carbon Composite Anodes for Highâ€Performance Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2012, 2, 238-244.	10.2	223

#	Article	IF	CITATIONS
19	Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. Journal of Power Sources, 2014, 247, 57-69.	4.0	212
20	Recent advances in Li1+xAlxTi2â^'x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials, 2019, 19, 379-400.	9.5	210
21	3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. Journal of Power Sources, 2012, 208, 340-344.	4.0	201
22	LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy and Environmental Science, 2013, 6, 1521.	15.6	199
23	Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy, 2019, 57, 414-423.	8.2	194
24	Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 53, 630-642.	8.2	191
25	Promising Dual-Doped Graphene Aerogel/SnS ₂ Nanocrystal Building High Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2637-2648.	4.0	185
26	Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy, 2016, 26, 533-540.	8.2	182
27	Controlled SnO2Crystallinity Effectively Dominating Sodium Storage Performance. Advanced Energy Materials, 2016, 6, 1502057.	10.2	180
28	Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. Journal of Power Sources, 2011, 196, 9625-9630.	4.0	171
29	A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy, 2021, 85, 105955.	8.2	171
30	Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. Journal of Materials Chemistry A, 2013, 1, 165-182.	5.2	163
31	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. Journal of Power Sources, 2018, 402, 281-295.	4.0	160
32	Binder-free porous core–shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochemistry Communications, 2010, 12, 1222-1225.	2.3	159
33	High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. Journal of Power Sources, 2012, 197, 238-245.	4.0	158
34	On rechargeability and reaction kinetics of sodium–air batteries. Energy and Environmental Science, 2014, 7, 3747-3757.	15.6	150
35	Building Fast Diffusion Channel by Constructing Metal Sulfide/Metal Selenide Heterostructures for High-Performance Sodium Ion Batteries Anode. Nano Letters, 2020, 20, 6199-6205.	4.5	149
36	Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sensors and Actuators B: Chemical, 2018, 255, 159-165.	4.0	142

#	Article	IF	CITATIONS
37	Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2009, 479, 310-313.	2.8	139
38	Defect-Rich Crystalline SnO ₂ Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 22149-22156.	1.5	138
39	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
40	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
41	Sulfur/Nitrogen Dual-doped Porous Graphene Aerogels Enhancing Anode Performance of Lithium Ion Batteries. Electrochimica Acta, 2016, 205, 188-197.	2.6	133
42	Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy, 2016, 24, 32-44.	8.2	132
43	SnO ₂ /Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18665-18674.	4.0	129
44	Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes. Journal of Physical Chemistry C, 2013, 117, 20260-20267.	1.5	123
45	Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chemical Communications, 2013, 49, 11731.	2.2	119
46	Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. Journal of Power Sources, 2013, 237, 41-46.	4.0	118
47	A review of atomic layer deposition providing high performance lithium sulfur batteries. Journal of Power Sources, 2017, 338, 34-48.	4.0	115
48	A ZnO/ZnFe ₂ O ₄ uniform core–shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Transactions, 2018, 47, 12181-12187.	1.6	115
49	Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 3535.	1.3	113
50	Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale, 2013, 5, 12607.	2.8	107
51	MOF derived ZnSe–FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. Journal of Power Sources, 2020, 455, 227937.	4.0	107
52	MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors. Materials Letters, 2017, 188, 1-4.	1.3	102
53	Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2019, 244, 188-196.	10.8	102
54	MOF-derived porous hollow Co ₃ O ₄ parallelepipeds for building high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22542-22546.	5.2	101

#	Article	IF	CITATIONS
55	Metal–Organic Frameworks-Derived Co ₂ P@N-C@rGO with Dual Protection Layers for Improved Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 14641-14648.	4.0	100
56	Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material. Electrochimica Acta, 2013, 93, 195-201.	2.6	99
57	Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 10643-10651.	4.0	98
58	Direct coherent multi-ink printing of fabric supercapacitors. Science Advances, 2021, 7, .	4.7	95
59	Graphene Nanoribbons Derived from the Unzipping of Carbon Nanotubes: Controlled Synthesis and Superior Lithium Storage Performance. Journal of Physical Chemistry C, 2014, 118, 881-890.	1.5	93
60	Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. Journal of Materials Chemistry, 2012, 22, 18847.	6.7	91
61	Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li ₄ Ti ₅ O ₁₂ anode. Journal of Materials Chemistry A, 2015, 3, 11773-11781.	5.2	88
62	Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Materials, 2021, 34, 148-170.	9.5	88
63	Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries. Electrochimica Acta, 2015, 174, 762-769.	2.6	86
64	High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode. Chemical Engineering Journal, 2019, 370, 1485-1492.	6.6	86
65	Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects. Journal of Materials Chemistry A, 2020, 8, 17848-17882.	5.2	85
66	Superior sodium storage of novel VO ₂ nano-microspheres encapsulated into crumpled reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 4850-4860.	5.2	79
67	In situ self-catalyzed formation of core–shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7306.	5.2	78
68	Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. Journal of Materials Chemistry A, 2014, 2, 2306.	5.2	78
69	Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy, 2020, 77, 105034.	8.2	78
70	Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 11376-11386.	5.2	77
71	Fish gill-derived activated carbon for supercapacitor application. Journal of Alloys and Compounds, 2017, 694, 636-642.	2.8	76
72	Tailoring interactions of carbon and sulfur in Li–S battery cathodes: significant effects of carbon–heteroatom bonds. Journal of Materials Chemistry A, 2014, 2, 12866.	5.2	75

#	Article	IF	CITATIONS
73	Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochimica Acta, 2018, 259, 338-347.	2.6	75
74	3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors. Nano Energy, 2022, 91, 106630.	8.2	74
75	Improved photoelectrochemical response of CuWO4/BiOI p-n heterojunction embedded with plasmonic Ag nanoparticles. Chemical Engineering Journal, 2019, 370, 218-227.	6.6	72
76	A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage. Journal of Materials Chemistry A, 2019, 7, 3673-3681.	5.2	70
77	Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors. Applied Surface Science, 2019, 475, 285-293.	3.1	70
78	Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochimica Acta, 2013, 89, 387-393.	2.6	69
79	Constructing Sb O C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy, 2022, 93, 106764.	8.2	68
80	Rationally-designed configuration of directly-coated Ni3S2/Ni electrode by RGO providing superior sodium storage. Carbon, 2018, 133, 14-22.	5.4	67
81	Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage. Nano Energy, 2020, 71, 104594.	8.2	67
82	Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nature Communications, 2014, 5, 3415.	5.8	66
83	Rational design of Sn/SnO 2 /porous carbon nanocomposites as anode materials for sodium-ion batteries. Applied Surface Science, 2017, 412, 170-176.	3.1	63
84	Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage. Small Methods, 2021, 5, e2100444.	4.6	62
85	Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochemistry Communications, 2015, 57, 43-47.	2.3	61
86	An optimized Al ₂ O ₃ layer for enhancing the anode performance of NiCo ₂ O ₄ nanosheets for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 17881-17888.	5.2	61
87	Amorphous SnO2/graphene aerogel nanocomposites harvesting superior anode performance for lithium energy storage. Applied Energy, 2016, 175, 529-535.	5.1	60
88	Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 63, 100-104.	2.6	59
89	Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorganic Chemistry Frontiers, 2019, 6, 2488-2499.	3.0	59
90	Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Applied Surface Science, 2013, 266, 132-140.	3.1	58

#	Article	IF	CITATIONS
91	Carbon black cathodes for lithium oxygen batteries: Influence of porosity and heteroatom-doping. Carbon, 2013, 64, 170-177.	5.4	58
92	Functional Passivation Interface of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ toward Superior Lithium Storage. Advanced Functional Materials, 2021, 31, 2008301.	7.8	58
93	Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochimica Acta, 2013, 91, 227-233.	2.6	56
94	Reduced graphene oxide decorated porous SnO2 nanotubes with enhanced sodium storage. Journal of Alloys and Compounds, 2017, 710, 323-330.	2.8	56
95	An elaborate insight of lithiation behavior of V2O5 anode. Nano Energy, 2020, 78, 105233.	8.2	56
96	Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Advances, 2013, 3, 7285.	1.7	54
97	Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy, 2021, 83, 105772.	8.2	54
98	Electrochemical Impedance Spectroscopy Illuminating Performance Evolution of Porous Core–Shell Structured Nickel/Nickel Oxide Anode Materials. Electrochimica Acta, 2015, 164, 55-61.	2.6	52
99	Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries. Applied Surface Science, 2016, 364, 651-659.	3.1	52
100	Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Applied Catalysis B: Environmental, 2017, 203, 615-624.	10.8	51
101	Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy, 2020, 78, 105345.	8.2	51
102	Electrospun SnO2–ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2015, 40, 14338-14344.	3.8	50
103	Heterogeneous structured MoSe ₂ –MoO ₃ quantum dots with enhanced sodium/potassium storage. Journal of Materials Chemistry A, 2020, 8, 23395-23403.	5.2	48
104	Interaction of Carbon Coating on LiFePO ₄ : A Local Visualization Study of the Influence of Impurity Phases. Advanced Functional Materials, 2013, 23, 806-814.	7.8	47
105	Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. Materials Technology, 2019, 34, 232-245.	1.5	47
106	Fabrication of MoS ₂ -Graphene Nanocomposites by Layer-by-Layer Manipulation for High-Performance Lithium Ion Battery Anodes. ECS Journal of Solid State Science and Technology, 2013, 2, M3034-M3039.	0.9	46
107	Ion association tailoring SEI composition for Li metal anode protection. Journal of Energy Chemistry, 2020, 45, 1-6.	7.1	46
108	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45

#	Article	IF	CITATIONS
109	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. , 2020, 2, 1041-1056.		45
110	Controllably Designed "Vice-Electrode―Interlayers Harvesting High Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40273-40280.	4.0	44
111	A novel ZnO-based inorganic/organic bilayer with low resistance for Li metal protection. Energy Storage Materials, 2018, 14, 392-401.	9.5	44
112	Significantly increased cycling performance of novel "self-matrix―NiSnO3 anode in lithium ion battery application. RSC Advances, 2012, 2, 6150.	1.7	43
113	Promising Three-Dimensional Flowerlike CuWO ₄ Photoanode Modified with CdS and FeOOH for Efficient Photoelectrochemical Water Splitting. Industrial & Engineering Chemistry Research, 2018, 57, 6210-6217.	1.8	42
114	Controllable S-Vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy, 2020, 78, 105235.	8.2	41
115	Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage. Journal of Energy Chemistry, 2021, 55, 420-427.	7.1	41
116	Tin Oxide/Graphene Aerogel Nanocomposites Building Superior Rate Capability for Lithium Ion Batteries. Electrochimica Acta, 2015, 176, 610-619.	2.6	40
117	Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries. Nanomaterials, 2013, 3, 606-614.	1.9	39
118	Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes. Journal of Alloys and Compounds, 2015, 634, 50-57.	2.8	39
119	Double boosting single atom Fe–N4 sites for high efficiency O2 and CO2 electroreduction. Carbon, 2021, 182, 109-116.	5.4	39
120	Confining ZnS/SnS ₂ Ultrathin Heterostructured Nanosheets in Hollow Nâ€Đoped Carbon Nanocubes as Novel Sulfur Host for Advanced Liâ€S Batteries. Small, 2022, 18, e2107727.	5.2	39
121	A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance. Applied Surface Science, 2014, 317, 884-891.	3.1	38
122	Optimized activation of Li2MnO3 effectively boosting rate capability of xLi2MnO3â^™(1-x)LiMO2 cathode. Nano Energy, 2021, 88, 106240.	8.2	38
123	Observation of Surface/Defect States of SnO ₂ Nanowires on Different Substrates from X-ray Excited Optical Luminescence. Crystal Growth and Design, 2012, 12, 397-402.	1.4	37
124	Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. Applied Energy, 2016, 175, 512-521.	5.1	37
125	Vertically Aligned Co ₉ S ₈ Nanotube Arrays onto Graphene Papers as Highâ€Performance Flexible Electrodes for Supercapacitors. Chemistry - A European Journal, 2018, 24, 2339-2343.	1.7	37
126	A Mixed Microporous/Low-range Mesoporous Composite with High Sulfur Loading from Hierarchically-structured Carbon for Lithium Sulfur Batteries. Electrochimica Acta, 2017, 230, 181-188.	2.6	36

#	Article	IF	CITATIONS
127	Superior Sodium Storage of Vanadium Pentoxide Cathode with Controllable Interlamellar Spacing. Electrochimica Acta, 2017, 244, 77-85.	2.6	36
128	Novel method to enhance the cycling performance of spinel LiMn2O4. Electrochemistry Communications, 2007, 9, 2023-2026.	2.3	35
129	Superior Sodium Storage of Carbon-Coated NaV ₆ O ₁₅ Nanotube Cathode: Pseudocapacitance Versus Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 10631-10641.	4.0	35
130	Spinel LiMn2O4 active material with high capacity retention. Applied Surface Science, 2007, 253, 8592-8596.	3.1	33
131	Nanoporous tree-like SiO2 films fabricated by sol–gel assisted electrostatic spray deposition. Microporous and Mesoporous Materials, 2012, 151, 488-494.	2.2	33
132	Recent advances of polar transition-metal sulfides host materials for advanced lithium–sulfur batteries. Functional Materials Letters, 2018, 11, 1840010.	0.7	33
133	Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2020, 364, 137278.	2.6	33
134	Controllable lithium storage performance of tin oxide anodes with various particle sizes. International Journal of Hydrogen Energy, 2015, 40, 14314-14321.	3.8	32
135	Hierarchically novel bead-curtain-like zinc-cobalt sulfides arrays toward high energy density hybrid supercapacitors via morphology engineering. Journal of Power Sources, 2021, 489, 229535.	4.0	32
136	Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries. Materials Research Bulletin, 2017, 96, 516-523.	2.7	31
137	Design of V2O5·xH2O cathode for highly enhancing sodium storage. Journal of Alloys and Compounds, 2017, 722, 278-286.	2.8	31
138	Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction Electrocatalysis: A Review. Catalysts, 2018, 8, 301.	1.6	31
139	Facile synthesis of bamboo raft-like Co 3 O 4 with enhanced acetone gas sensing performances. Journal of Alloys and Compounds, 2018, 758, 45-53.	2.8	31
140	Unique Double-Interstitialcy Mechanism and Interfacial Storage Mechanism in the Graphene/Metal Oxide as the Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 3122-3130.	4.5	31
141	Surface Reconstruction of Niâ€Rich Layered Cathodes: In Situ Doping versus Ex Situ Doping. Small Structures, 2022, 3, .	6.9	31
142	Nitrogenâ€Doped Graphene Nanosheets/S Composites as Cathode in Roomâ€Temperature Sodiumâ€Sulfur Batteries. ChemistrySelect, 2017, 2, 9425-9432.	0.7	30
143	A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Frontiers in Chemistry, 2019, 7, 721.	1.8	30
144	Understanding the Critical Role of Binders in Phosphorus/Carbon Anode for Sodiumâ€lon Batteries through Unexpected Mechanism. Advanced Functional Materials, 2020, 30, 2000060.	7.8	29

#	Article	IF	CITATIONS
145	N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. Journal of Alloys and Compounds, 2020, 821, 153268.	2.8	28
146	Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 795-801.	2.3	27
147	Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metalâ€ion Batteries: Progress and Opportunities. ChemSusChem, 2020, 13, 1172-1202.	3.6	27
148	Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell. Journal of Solid State Electrochemistry, 2008, 12, 851-855.	1.2	26
149	Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries. Materials Chemistry and Physics, 2018, 217, 547-552.	2.0	26
150	Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30763-30773.	4.0	26
151	Constructing chinky zinc oxide hierarchical hexahedrons for highly sensitive formaldehyde gas detection. Journal of Alloys and Compounds, 2019, 775, 402-410.	2.8	26
152	Novel approach to preparation of LiMn2O4 core/LiNixMn2â^'xO4 shell composite. Applied Surface Science, 2009, 255, 5651-5655.	3.1	24
153	Cooperation effect of heterojunction and co-catalyst in BiVO ₄ /Bi ₂ S ₃ /NiOOH photoanode for improving photoelectrochemical performances. New Journal of Chemistry, 2018, 42, 19415-19422.	1.4	24
154	Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries. Frontiers in Chemistry, 2020, 8, 353.	1.8	24
155	Ionic Conductive Interface Boosting High Performance LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ for Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3242-3252.	2.5	24
156	ZnO Interface Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Toward Boosting Lithium Storage. Energy and Environmental Materials, 2020, 3, 522-528.	7.3	24
157	Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 592, 448-454.	5.0	24
158	PVP-derived carbon nanofibers harvesting enhanced anode performance for lithium ion batteries. RSC Advances, 2016, 6, 4193-4199.	1.7	23
159	Novel iodine-doped reduced graphene oxide anode for sodium ion batteries. RSC Advances, 2017, 7, 55060-55066.	1.7	23
160	Superior full battery performance of tunable hollow N-Doped carbonaceous fibers encapsulating Ni3S2 nanocrystals with enhanced Li/Na storage. Electrochimica Acta, 2020, 332, 135446.	2.6	23
161	Constructing highly utilizable Fe-N4 single-atom sites by one-step gradient pyrolysis for electroreduction of O2 and CO2. Chemical Engineering Journal, 2022, 440, 135749.	6.6	23
162	Electrochemical Changes in Lithium-Battery Electrodes Studied Using 7Li NMR and Enhanced 13C NMR of Graphene and Graphitic Carbons. Chemistry of Materials, 2015, 27, 3299-3305.	3.2	22

#	Article	IF	CITATIONS
163	Novel amorphous CoSnO3@rGO nanocomposites highly enhancing sodium storage. Electrochimica Acta, 2019, 316, 236-247.	2.6	22
164	A lattice-matched interface between in situ/artificial SEIs inhibiting SEI decomposition for enhanced lithium storage. Journal of Materials Chemistry A, 2020, 8, 11165-11176.	5.2	22
165	Three-dimensionally Hierarchical Porous Carbon Creating High-performance Electrochemical Capacitors. Electrochimica Acta, 2014, 138, 193-199.	2.6	21
166	1D ZnFe2O4 nanorods coupled with plasmonic Ag, Ag2S nanoparticles and Co-Pi cocatalysts for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 19841-19854.	3.8	21
167	Understanding the Relationships between Morphology, Solid Electrolyte Interphase Composition, and Coulombic Efficiency of Lithium Metal. ACS Applied Materials & Interfaces, 2020, 12, 22268-22277.	4.0	21
168	Porous skeleton-stabilized Co/N–C coated separator for boosting lithium-ion batteries stability and safety. Journal of Power Sources, 2021, 499, 229933.	4.0	21
169	Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Applied Surface Science, 2013, 285, 235-240.	3.1	20
170	Direct evidence of a conversion mechanism in a NiSnO ₃ anode for lithium ion battery application. RSC Advances, 2014, 4, 36301-36306.	1.7	20
171	Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. Nano Energy, 2019, 66, 104177.	8.2	20
172	A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al ₂ O ₃ self-passivation. Chemical Communications, 2019, 55, 15093-15096.	2.2	20
173	Elastic buffer structured Si/C microsphere anodes <i>via</i> polymerization-induced colloid aggregation. Chemical Communications, 2020, 56, 6770-6773.	2.2	20
174	A promising p-type Co–ZnFe ₂ O ₄ nanorod film as a photocathode for photoelectrochemical water splitting. Chemical Communications, 2020, 56, 5279-5282.	2.2	20
175	Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2015, 646, 1009-1014.	2.8	19
176	Carbon nanotubes cross-linked Zn2SnO4 nanoparticles/graphene networks as high capacities, long life anode materials for lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 851-860.	1.5	19
177	Nitrogen-doped graphene nanosheets/sulfur composite as lithium–sulfur batteries cathode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 83-89.	1.7	18
178	Enhanced Lithium Storage Performance of Liquidâ€Phase Exfoliated Graphene Supported WS ₂ Heterojunctions. ChemElectroChem, 2018, 5, 3222-3228.	1.7	18
179	The enhanced anticoagulation for graphene induced by COOH+ ion implantation. Nanoscale Research Letters, 2015, 10, 14.	3.1	17
180	ALD derived Fe3+- doping toward high performance P2–Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries. Materials Today Energy, 2019, 14, 100353.	2.5	16

#	Article	IF	CITATIONS
181	Asynchronous reactions of "self-matrix―dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage. Chemical Communications, 2019, 55, 9076-9079.	2.2	15
182	Polycrystalline VO2(M) with well-dispersed crystalline zones for enhanced electroactivity of lithium-ion batteries. Journal of Alloys and Compounds, 2020, 812, 152122.	2.8	15
183	Fabrication of porous Co3O4 with different nanostructures by solid-state thermolysis of metal–organic framework for supercapacitors. Journal of Materials Science, 2018, 53, 8474-8482.	1.7	14
184	Three-dimensionally porous CoMn2O4 thin films grown on Ni foams for high-performance lithium-ion battery anodes. Journal of Materials Science, 2017, 52, 5751-5758.	1.7	13
185	Optimized ALD-derived MgO coating layers enhancing silicon anode performance for lithium ion batteries. Journal of Materials Research, 2019, 34, 2425-2434.	1.2	13
186	Biomass-derived carbon for ORR: pine needles as a single source for efficient carbon electrocatalyst. Journal of Applied Electrochemistry, 2020, 50, 1257-1267.	1.5	13
187	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 37116-37127.	4.0	13
188	New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy, 2021, 89, 106334.	8.2	13
189	Grain boundary enriched CuO nanobundle for efficient non-invasive glucose sensors/fuel cells. Journal of Colloid and Interface Science, 2022, 609, 139-148.	5.0	13
190	A New Co-Free Ni-Rich LiNi _{0.8} Fe _{0.1} Mn _{0.1} O ₂ Cathode for Low-Cost Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57341-57349.	4.0	13
191	Porous SnO ₂ /CNT composite anodes: Influence of composition and deposition temperature on the electrochemical performance. Journal of Materials Research, 2010, 25, 1554-1560.	1.2	12
192	Paulownia tomentosa derived porous carbon with enhanced sodium storage. Journal of Materials Research, 2018, 33, 1236-1246.	1.2	12
193	Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode. Journal of Electroanalytical Chemistry, 2019, 833, 340-348.	1.9	12
194	Formation of hollow nanofiber rolls through controllable carbon diffusion for Li metal host. Carbon, 2020, 157, 622-630.	5.4	12
195	In Situ Surface Film Formed by Solidâ€State Anodic Oxidation for Stable Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2101737.	7.8	12
196	Large Interlayer Spacing of Few-Layered Cobalt–Tin-Based Sulfide Providing Superior Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 41546-41556.	4.0	11
197	Controlling the Growth of Ni ₃ S ₂ Anode with Tunable Sodium Storage. Advanced Materials Interfaces, 2018, 5, 1701684.	1.9	10
198	Controllable atomic layer deposition coatings to boost the performance of LiMn _{<i>x</i>} Co _{<i>y</i>} Ni _{1â^²<i>x</i>} â^² <i>y</i> O <sub in lithium-ion batteries: A review. Journal of Materials Research, 2020, 35, 762-774.</sub)>2 1/2 ub>	10

#	Article	IF	CITATIONS
199	3D printing coaxial fiber electrodes towards boosting ultralong cycle life of fibrous supercapacitors. Electrochimica Acta, 2021, 380, 138220.	2.6	10
200	Impact of Micro-/Mesoporous Carbonaceous Structure on Electrochemical Performance of Sulfur. Electrochimica Acta, 2017, 248, 416-424.	2.6	9
201	Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries. Applied Surface Science, 2018, 445, 359-367.	3.1	9
202	Mesoporous ZnCo ₂ O ₄ /rGO nanocomposites enhancing sodium storage. Nanotechnology, 2019, 30, 234005.	1.3	9
203	β-FeOOH Interlayer With Abundant Oxygen Vacancy Toward Boosting Catalytic Effect for Lithium Sulfur Batteries. Frontiers in Chemistry, 2020, 8, 309.	1.8	9
204	Facile synthesis of tetragonal NaV2O5·H2O nanosheets co-intercalated by high content of Na+ and H2O for boosted lithium storage. Chemical Engineering Journal, 2020, 402, 126131.	6.6	7
205	Suppressing Dendrites via Interfacial Ionic Conductivity Regulation in Lithium Metal Batteries. Energy & amp; Fuels, 2021, 35, 5333-5341.	2.5	7
206	Temperature dependent capacity contribution of thermally treated anode current collectors in lithium ion batteries. Applied Surface Science, 2013, 264, 419-423.	3.1	6
207	Enhanced lithium/sodium storage of SnO2/Graphene aerogels nanocomposites. Materials Chemistry and Physics, 2019, 238, 121870.	2.0	5
208	Synthesis of CoMn2O4 thin films on Ni foams by electrostatic spray deposition as anodes for sodium–ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11404-11408.	1.1	4
209	Interfacial Mn Vacancy for Li-Rich Mn-Based Oxide Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 22161-22169.	4.0	4
210	A Novel Method to Improve Cycling Performance of LiMn2O4 Cathodes. ECS Transactions, 2006, 1, 59-67.	0.3	3
211	Efficient carbon-based electrocatalyst derived from biomass for hydrogen peroxide generation. Materials Today Communications, 2021, 26, 102051.	0.9	2
212	Heterogeneous Interface-Derived Engineered Electronic Structure of SiO with Enhanced Lithium Storage. ACS Applied Energy Materials, 2022, 5, 750-759.	2.5	2
213	Preparation of LiMn2O4 Cathode with Excellent Cycling Performance. ECS Transactions, 2006, 2, 1-9.	0.3	1
214	Thin aluminum film improving the cycle performance of positive electrode of lithium ion battery. Applied Surface Science, 2007, 253, 8453-8457.	3.1	1
215	Graphene and N-Doped Graphene as Cathodes for Li-Air Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
216	Toward layered MoS ₂ anode for harvesting superior lithium storage. RSC Advances, 2022, 12. 9917-9922.	1.7	0