
Takashi Ebihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191714/publications.pdf Version: 2024-02-01

Τλέλομι Εριμλάλ

#	Article	IF	CITATIONS
1	BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4+ TÂcell responses to persistent antigen. Immunity, 2022, 55, 1200-1215.e6.	14.3	30
2	Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature, 2022, 607, 142-148.	27.8	34
3	Trained innate lymphoid cells in allergic diseases. Allergology International, 2021, 70, 174-180.	3.3	14
4	A Fateful Decision in the Thymus Controlled by the Transcription Factor ThPOK. Journal of Immunology, 2021, 206, 1981-1982.	0.8	1
5	Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection. Journal of Experimental Medicine, 2021, 218, .	8.5	19
6	Thymic development of gut-microbiota-specific T cells. Nature, 2021, 594, 413-417.	27.8	108
7	Identification of a T-bethi Quiescent Exhausted CD8 T Cell Subpopulation That Can Differentiate into TIM3+CX3CR1+ Effectors and Memory-like Cells. Journal of Immunology, 2021, 206, 2924-2936.	0.8	17
8	Unexpected suppression of tumorigenesis by c-MYC via TFAP4-dependent restriction of stemness in B lymphocytes. Blood, 2021, 138, 2526-2538.	1.4	5
9	Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity, 2021, 54, 1417-1432.e7.	14.3	17
10	Hobit confers tissue-dependent programs to type 1 innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
11	Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells, 2020, 9, 1193.	4.1	17
12	Strength of tonic T cell receptor signaling instructs T follicular helper cell–fate decisions. Nature Immunology, 2020, 21, 1384-1396.	14.5	25
13	Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO Journal, 2020, 39, e105246.	7.8	31
14	Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nature Communications, 2019, 10, 447.	12.8	55
15	Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature, 2019, 570, 528-532.	27.8	153
16	Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Reports, 2019, 27, 2063-2074.e5.	6.4	205
17	Transcription Factors in the Development and Function of Group 2 Innate Lymphoid Cells. International Journal of Molecular Sciences, 2019, 20, 1377.	4.1	21
18	Exhausted-like Group 2 Innate Lymphoid Cells in Chronic Allergic Inflammation. Trends in Immunology, 2019, 40, 1095-1104.	6.8	10

TAKASHI EBIHARA

#	Article	IF	CITATIONS
19	PD-1 Signaling Promotes Control of Chronic Viral Infection by Restricting Type-I-Interferon-Mediated Tissue Damage. Cell Reports, 2019, 29, 2556-2564.e3.	6.4	6
20	Regulation of metabolic supply and demand during B cell activation and subsequent differentiation. Current Opinion in Immunology, 2019, 57, 8-14.	5.5	24
21	Cbfβ2 controls differentiation of and confers homing capacity to prethymic progenitors. Journal of Experimental Medicine, 2018, 215, 595-610.	8.5	12
22	Cutting Edge: The Histone Methyltransferase G9a Is Required for Silencing of Helper T Lineage–Associated Genes in Proliferating CD8 T Cells. Journal of Immunology, 2018, 200, 3891-3896.	0.8	14
23	Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity, 2018, 48, 923-936.e4.	14.3	54
24	The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathogens, 2018, 14, e1007053.	4.7	33
25	Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF–IRF4 transcription factor complex. Nature Immunology, 2017, 18, 563-572.	14.5	95
26	The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. Journal of Experimental Medicine, 2017, 214, 1181-1198.	8.5	105
27	Roles of RUNX Complexes in Immune Cell Development. Advances in Experimental Medicine and Biology, 2017, 962, 395-413.	1.6	20
28	Identification of lineage-specifying cytokines that signal all CD8+-cytotoxic-lineage-fate 'decisions' in the thymus. Nature Immunology, 2017, 18, 1218-1227.	14.5	31
29	Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes. Nature Communications, 2017, 8, 702.	12.8	41
30	Immunoreceptor tyrosine-based inhibitory motif–dependent functions of an MHC class I-specific NK cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8440-E8447.	7.1	17
31	The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses. Immunity, 2016, 45, 570-582.	14.3	82
32	Myc or no Myc, that is the question. EMBO Journal, 2015, 34, 1990-1991.	7.8	5
33	Regulation of CD4 and CD8 Coreceptor Expression and CD4 Versus CD8 Lineage Decisions. Advances in Immunology, 2015, 125, 1-40.	2.2	23
34	The histone methyltransferase SETDB1 represses endogenous and exogenous retroviruses in B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8367-8372.	7.1	78
35	Runx3 specifies lineage commitment of innate lymphoid cells. Nature Immunology, 2015, 16, 1124-1133.	14.5	154
36	Restriction of Nonpermissive RUNX3 Protein Expression in T Lymphocytes by the Kozak Sequence. Journal of Immunology, 2015, 195, 1517-1523.	0.8	13

Takashi Ebihara

#	Article	IF	CITATIONS
37	A Silencer-Proximal Intronic Region Is Required for Sustained CD4 Expression in Postselection Thymocytes. Journal of Immunology, 2014, 192, 4620-4627.	0.8	24
38	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	14.5	85
39	Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nature Communications, 2014, 5, 3551.	12.8	152
40	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	28.9	359
41	CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nature Immunology, 2014, 15, 439-448.	14.5	70
42	Continued mission of ThPOK. Nature Immunology, 2014, 15, 900-902.	14.5	2
43	Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood, 2014, 123, 2968-2977.	1.4	42
44	Natural killer cell licensing in mice with inducible expression of MHC class I. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4232-7.	7.1	36
45	<i>Cd8</i> enhancer <i> E8 _I </i> and Runx factors regulate CD8α expression in activated CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18330-18335.	7.1	41
46	Transcription factor AP4 modulates reversible and epigenetic silencing of the Cd4 gene. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14873-14878.	7.1	33
47	Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate Î ³ δT Cells Is Controlled by Strength of TCR Signaling and Id3. Journal of Immunology, 2010, 184, 1268-1279.	0.8	139
48	Runx and ThPOK: A balancing act to regulate thymocyte lineage commitment. Journal of Cellular Biochemistry, 2009, 107, 1037-1045.	2.6	22
49	Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 2009, 10, 1170-1177.	14.5	181
50	Antagonistic interplay between ThPOK and Runx in lineage choice of thymocytes. Blood Cells, Molecules, and Diseases, 2009, 43, 27-29.	1.4	10
51	ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nature Immunology, 2008, 9, 1131-1139.	14.5	184
52	The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. Journal of Experimental Medicine, 2008, 205, 1939-1939.	8.5	72
53	Lineage Diversion of T Cell Receptor Transgenic Thymocytes Revealed by Lineage Fate Mapping. PLoS ONE, 2008, 3, e1512.	2.5	40
54	The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. Journal of Experimental Medicine, 2007, 204, 1945-1957.	8.5	262

Takashi Ebihara

#	Article	IF	CITATIONS
55	IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology, 2007, 8, 967-974.	14.5	1,873
56	Runx3 Regulates Integrin αE/CD103 and CD4 Expression during Development of CD4â^'/CD8+ T Cells. Journal of Immunology, 2005, 175, 1694-1705.	0.8	112
57	Genetic Evidence Supporting Selection of the Vα14i NKT Cell Lineage from Double-Positive Thymocyte Precursors. Immunity, 2005, 22, 705-716.	14.3	240
58	Cellular Niches Controlling B Lymphocyte Behavior within Bone Marrow during Development. Immunity, 2004, 20, 707-718.	14.3	679
59	Requirement for CARMA1 in Antigen Receptor-Induced NF-κB Activation and Lymphocyte Proliferation. Current Biology, 2003, 13, 1252-1258.	3.9	242
60	Long-Term Hematopoietic Stem Cells Require Stromal Cell-Derived Factor-1 for Colonizing Bone Marrow during Ontogeny. Immunity, 2003, 19, 257-267.	14.3	312
61	A Role of CXC Chemokine Ligand 12/Stromal Cell-Derived Factor-1/Pre-B Cell Growth Stimulating Factor and Its Receptor CXCR4 in Fetal and Adult T Cell Development in Vivo. Journal of Immunology, 2003, 170, 4649-4655.	0.8	154
62	Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5319-5323.	7.1	295
63	The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. Journal of Leukocyte Biology, 2003, 73, 273-280.	3.3	105
64	Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development. Cell, 2002, 111, 621-633.	28.9	672
65	The Earliest Stages of B Cell Development Require a Chemokine Stromal Cell-Derived Factor/Pre-B Cell Growth-Stimulating Factor. Immunity, 2001, 15, 323-334.	14.3	188
66	Title is missing!. Journal of Jsee, 2001, 49, 35-38.	0.0	0
67	Interleukin-6 secreting phaeochromocytoma associated with clinical markers of inflammation. Clinical Endocrinology, 1997, 46, 507-509.	2.4	38