Hiutung Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191683/publications.pdf Version: 2024-02-01

Нитимс Сни

#	Article	IF	CITATIONS
1	Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nature Microbiology, 2022, 7, 262-276.	5.9	110
2	The Host-Microbiome Response to Hyperbaric Oxygen Therapy in Ulcerative Colitis Patients. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 35-53.	2.3	10
3	Microbial-Driven Immunological Memory and Its Potential Role in Microbiome Editing for the Prevention of Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 752304.	1.8	2
4	Novel Strategies for Targeting the Control of Mucosal Inflammation. , 2020, , 869-879.		0
5	Microbial Metabolite Fortifies the Immune Firewall. Cell Host and Microbe, 2020, 28, 631-633.	5.1	3
6	Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nature Microbiology, 2020, 5, 746-756.	5.9	57
7	Strain diversity in the microbiome: Lessons from Bacteroides fragilis. PLoS Pathogens, 2020, 16, e1009056.	2.1	38
8	Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nature Communications, 2019, 10, 2153.	5.8	178
9	Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology, 2019, 156, 2174-2189.	0.6	132
10	Host gene–microbiome interactions: molecular mechanisms in inflammatory bowel disease. Genome Medicine, 2017, 9, 69.	3.6	13
11	Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352, 1116-1120.	6.0	498
12	Proteolysis triggers self-assembly and unmasks innate immune function of a human α-defensin peptide. Chemical Science, 2016, 7, 1738-1752.	3.7	31
13	Winning the Microbial Battle, but Not the War. Cell, 2015, 163, 271-272.	13.5	2
14	Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. ELife, 2015, 4, e09083.	2.8	134
15	Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, 2013, 14, 668-675.	7.0	481
16	Bifidobacterium bifidum in a rat model of necrotizing enterocolitis: antimicrobial peptide and protein responses. Pediatric Research, 2012, 71, 546-551.	1.1	43
17	Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	6.0	337
18	Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection. BMC Complementary and Alternative Medicine, 2012, 12, 84.	3.7	63

Нитимс Сни

#	Article	IF	CITATIONS
19	Expression and Activity of a Novel Cathelicidin from Domestic Cats. PLoS ONE, 2011, 6, e18756.	1.1	15
20	Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology, 2010, 11, 76-82.	7.0	1,013
21	Interleukin-23 Orchestrates Mucosal Responses to <i>Salmonella enterica</i> Serotype Typhimurium in the Intestine. Infection and Immunity, 2009, 77, 387-398.	1.0	152
22	Regulation of C-type Lectin Antimicrobial Activity by a Flexible N-terminal Prosegment. Journal of Biological Chemistry, 2009, 284, 4881-4888.	1.6	84
23	Lipocalin-2 Resistance Confers an Advantage to Salmonella enterica Serotype Typhimurium for Growth and Survival in the Inflamed Intestine. Cell Host and Microbe, 2009, 5, 476-486.	5.1	444
24	Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract. BMC Immunology, 2008, 9, 37.	0.9	79
25	The Capsule Encoding the viaB Locus Reduces Interleukin-17 Expression and Mucosal Innate Responses in the Bovine Intestinal Mucosa during Infection with Salmonella enterica Serotype Typhi. Infection and Immunity, 2007, 75, 4342-4350.	1.0	83
26	Paneth cell antimicrobial peptides: Topographical distribution and quantification in human gastrointestinal tissues. FEBS Letters, 2006, 580, 5344-5350.	1.3	147
27	Reduced Paneth cell Â-defensins in ileal Crohn's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18129-18134.	3.3	954