Sk Kulkarni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11915356/publications.pdf

Version: 2024-02-01

		147566]	168136	
53	2,954 citations	31		53	
papers	citations	h-index		g-index	
53	53	53		3440	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Withania somnifera: An Indian ginseng. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 1093-1105.	2.5	279
2	Nitric oxide and major depression. Nitric Oxide - Biology and Chemistry, 2011, 24, 125-131.	1.2	183
3	Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Research, 1997, 752, 61-71.	1.1	158
4	Heat and other physiological stress-induced analgesia: Catecholamine mediated and naloxone reversible response. Life Sciences, 1980, 27, 185-188.	2.0	137
5	Molecular interactions of ethanol with GABAergic system and potential of RO15–4513 as an ethanol antagonist. Pharmacology Biochemistry and Behavior, 1988, 30, 501-510.	1.3	133
6	Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. European Journal of Pharmacology, 2007, 568, 177-185.	1.7	116
7	On the antinociceptive effect of fluoxetine, a selective serotonin reuptake inhibitor. Brain Research, 2001, 915, 218-226.	1.1	112
8	Potentials of Curcumin as an Antidepressant. Scientific World Journal, The, 2009, 9, 1233-1241.	0.8	112
9	An overview of curcumin in neurological disorders. Indian Journal of Pharmaceutical Sciences, 2010, 72, 149.	1.0	108
10	Effect of various classes of antidepressants in behavioral paradigms of despair. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2007, 31, 1248-1254.	2.5	96
11	Involvement of l-arginine–nitric oxide–cyclic guanosine monophosphate pathway in the antidepressant-like effect of venlafaxine in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2007, 31, 921-925.	2.5	91
12	Sex and Estrous Cycle-Dependent Changes in Neurosteroid and Benzodiazepine Effects on Food Consumption and Plus-Maze Learning Behaviors in Rats. Pharmacology Biochemistry and Behavior, 1999, 62, 53-60.	1.3	89
13	The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice. Brain Research, 1998, 791, 108-116.	1.1	84
14	Improvement of Mouse Memory by Myristica fragrans Seeds. Journal of Medicinal Food, 2004, 7, 157-161.	0.8	78
15	Comparative Brain Cholinesterase-Inhibiting Activity of Glycyrrhiza glabra, Myristica fragrans, Ascorbic Acid, and Metrifonate in Mice. Journal of Medicinal Food, 2006, 9, 281-283.	0.8	69
16	Phosphodiesterase 5 enzyme and its inhibitors: Update on pharmacological and therapeutical aspects. Methods and Findings in Experimental and Clinical Pharmacology, 2004, 26, 789.	0.8	66
17	Brain renin angiotensin system (RAS) in stress-induced analgesia and impaired retention. Peptides, 1999, 20, 335-342.	1.2	57
18	Comparative studies on the memory- enhancing actions of captopril and losartan in mice using inhibitory shock avoidance paradigm. Neuropeptides, 2001, 35, 65-69.	0.9	55

#	Article	IF	CITATIONS
19	Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: Possible involvement of adenosinergic mechanism. Epilepsy Research, 2008, 78, 60-70.	0.8	54
20	Cyclooxygenase in epilepsy: from perception to application. Drugs of Today, 2009, 45, 135.	0.7	49
21	Effect of Addition of Yohimbine (Alpha-2-Receptor Antagonist) to the Antidepressant Activity of Fluoxetine or Venlafaxine in the Mouse Forced Swim Test. Pharmacology, 2007, 80, 239-243.	0.9	48
22	Memory-Strengthening Activity of Glycyrrhiza glabra in Exteroceptive and Interoceptive Behavioral Models. Journal of Medicinal Food, 2004, 7, 462-466.	0.8	46
23	Involvement of dopamine (DA)/serotonin (5-HT)/sigma ($\overline{l}f$) receptor modulation in mediating the antidepressant action of ropinirole hydrochloride, a D2/D3 dopamine receptor agonist. Brain Research Bulletin, 2007, 74, 58-65.	1.4	45
24	Antidepressant-like effect of $17\hat{l}^2$ -estradiol: involvement of dopaminergic, serotonergic, and (or) sigma-1 receptor systems. Canadian Journal of Physiology and Pharmacology, 2008, 86, 726-735.	0.7	43
25	Involvement of cholinergic system in losartan-induced facilitation of spatial and short-term working memory. Neuropeptides, 1998, 32, 417-421.	0.9	42
26	Nitric oxide signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol-induced seizure threshold in mice. European Journal of Pharmacology, 2008, 587, 129-134.	1.7	38
27	Tardive dyskinesia: An update. Drugs of Today, 2001, 37, 97.	0.7	36
28	Reversal by alpha-2 agonists of diazepam withdrawal hyperactivity in rats. Psychopharmacology, 1986, 90, 198-202.	1.5	34
29	Protective Effect of Quercetin on Alcohol Abstinence-Induced Anxiety and Convulsions. Journal of Medicinal Food, 2005, 8, 392-396.	0.8	34
30	Risperidone, an atypical antipsychotic enhances the antidepressant-like effect of venlafaxine or fluoxetine: Possible involvement of alpha-2 adrenergic receptors. Neuroscience Letters, 2008, 445, 83-88.	1.0	34
31	Venlafaxine reverses chronic fatigue-induced behavioral, biochemical and neurochemical alterations in mice. Pharmacology Biochemistry and Behavior, 2008, 89, 563-571.	1.3	33
32	Evaluation of Antidepressant-Like Activity of Novel Water-Soluble Curcumin Formulations and St. John's Wort in Behavioral Paradigms of Despair. Pharmacology, 2012, 89, 83-90.	0.9	33
33	Fluoxetine suppresses morphine tolerance and dependence: Modulation of NO-cGMP/DA/serotoninergic pathways. Methods and Findings in Experimental and Clinical Pharmacology, 2003, 25, 273.	0.8	33
34	Involvement of sigma ($if1$) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. Journal of Psychopharmacology, 2008, 22, 691-696.	2.0	32
35	Involvement of sigma-1 receptor modulation in the antidepressant action of venlafaxine. Neuroscience Letters, 2007, 420, 204-208.	1.0	30
36	Possible involvement of sigmaâ€1 receptors in the antiâ€immobility action of bupropion, a dopamine reuptake inhibitor. Fundamental and Clinical Pharmacology, 2008, 22, 387-394.	1.0	30

#	Article	IF	CITATIONS
37	Tiagabine, a GABA uptake inhibitor, attenuates 3-nitropropionic acid-induced alterations in various behavioral and biochemical parameters in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 835-843.	2.5	30
38	Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigates MPTP-induced neurotoxicity in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 974-981.	2.5	27
39	Role of D1/D2 dopamine and N-methyl-d-aspartate (NMDA) receptors in morphine tolerance and dependence in mice. European Neuropsychopharmacology, 1995, 5, 81-87.	0.3	25
40	Protective effect of cyclooxygenase (COX)-inhibitors against drug-induced catatonia and MPTP-induced striatal lesions in rats. Pharmacology Biochemistry and Behavior, 2009, 94, 219-226.	1.3	23
41	Modification of drug-induced catatonia and tremors by quipazine in rats and mice The Japanese Journal of Pharmacology, 1980, 30, 129-135.	1.2	18
42	Modulation of motor functions involving the dopaminergic system by AT1 receptor antagonist, losartan. Neuropeptides, 1998, 32, 275-280.	0.9	18
43	Systemic administration of adenosine ameliorates pentylenetetrazol-induced chemical kindling and secondary behavioural and biochemical changes in mice. Fundamental and Clinical Pharmacology, 2007, 21, 583-594.	1.0	16
44	Effect of systemic administration of adenosine on brain adenosine levels in pentylenetetrazol-induced seizure threshold in mice. Neuroscience Letters, 2007, 425, 39-42.	1.0	15
45	Estimation of adenosine and its major metabolites in brain tissues of rats using high-performance thin-layer chromatography–densitometry. Journal of Chromatography A, 2008, 1209, 230-237.	1.8	13
46	GABA-mediated modification of despair behavior in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 339, 306-11.	1.4	11
47	Antagonistic Activity of Ascorbic Acid (Vitamin C) on Dopaminergic Modulation: Apomorphine-Induced Stereotypic Behavior in Mice. Pharmacology, 2006, 77, 38-45.	0.9	11
48	Protective effect of bupropion on morphine tolerance and dependence in mice. Methods and Findings in Experimental and Clinical Pharmacology, 2004, 26, 623.	0.8	10
49	Antidepressant-like effect of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a putative trace amine receptor ligand involves l-arginine–nitric oxide–cyclic guanosine monophosphate pathway. Neuroscience Letters, 2011, 503, 120-124.	1.0	7
50	Evaluation of antidepressant activity of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a \hat{l}^2 -substituted phenylethylamine in mice. European Neuropsychopharmacology, 2011, 21, 705-714.	0.3	5
51	Ascorbic acid inhibits development of tolerance and dependence to opiates in mice: Possible glutamatergic or dopaminergic modulation. Indian Journal of Pharmaceutical Sciences, 2008, 70, 56.	1.0	4
52	Adenosinergic system: an assorted approach to therapeutics for drug addiction. Future Neurology, 2012, 7, 307-327.	0.9	3
53	Synthesis and evaluation of variably substituted N-methyl tetrahydroisoquinolines and benzazepines as monoamine reuptake inhibitors. Results in Chemistry, 2022, 4, 100352.	0.9	1