Tuo Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11914385/publications.pdf

Version: 2024-02-01

218677 254184 1,907 43 45 26 citations h-index g-index papers 45 45 45 2548 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Scale-up of immobilized amine sorbent pellets for landfill gas upgrading, using benchtop and pilot equipment. Powder Technology, 2022, 395, 243-254.	4.2	3
2	Microwave-accelerated regeneration of a non-aqueous slurry for energy-efficient carbon sequestration. Materials Today Sustainability, 2022, 19, 100168.	4.1	5
3	Porous Metallosalen Hypercrosslinked Ionic Polymers for Cooperative CO ₂ Cycloaddition Conversion. Industrial & Engineering Chemistry Research, 2020, 59, 676-684.	3.7	34
4	Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for Highâ€Performance Triboelectric Devices in Selfâ€Powered Wearable Cardiovascular Monitorings. Advanced Materials, 2020, 32, e2002878.	21.0	66
5	Microwave-Responsive Nanomaterials for Catalysis. Springer Series in Materials Science, 2020, , 65-91.	0.6	2
6	Steam-Stable Basic Immobilized Amine Sorbent Pellets for CO ₂ Capture Under Practical Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38336-38346.	8.0	11
7	Structural strategies to design bio-ionic liquid: Tuning molecular interaction with lignin for enhanced lubrication. Journal of Molecular Liquids, 2019, 280, 49-57.	4.9	12
8	Niobium-doped TiO2 solid acid catalysts: Strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production. Applied Catalysis B: Environmental, 2019, 243, 741-749.	20.2	34
9	Thermal Conduction in Polymer Composites. , 2019, , 77-110.		7
10	The stiffness–thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale, 2018, 10, 1695-1703.	5.6	56
11	Effect of interface on the mechanical behavior of polybutadiene–silica composites: An experimental and simulation study. Journal of Applied Polymer Science, 2018, 135, 46089.	2.6	9
12	Localizing microwave heat by surface polarization of titanate nanostructures for enhanced catalytic reaction efficiency. Applied Catalysis B: Environmental, 2018, 227, 266-275.	20.2	21
13	Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12, 92-130.	4.3	299
14	Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion. Applied Catalysis B: Environmental, 2018, 220, 581-588.	20.2	50
15	Coupled Chemical and Thermal Drivers in Microwaves toward Ultrafast HMF Oxidation to FDCA. ACS Sustainable Chemistry and Engineering, 2018, 6, 11493-11501.	6.7	41
16	Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip–surface contact resistance models. Nanoscale Horizons, 2018, 3, 505-516.	8.0	21
17	Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties. Applied Surface Science, 2017, 399, 565-572.	6.1	25
18	Molecular Origin of Efficient Phonon Transfer in Modulated Polymer Blends: Effect of Hydrogen Bonding on Polymer Coil Size and Assembled Microstructure. Journal of Physical Chemistry C, 2017, 121, 14204-14212.	3.1	53

#	Article	IF	Citations
19	Enhancing Energy Efficiency in Saccharide–HMF Conversion with Core/shell Structured Microwave Responsive Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 4352-4358.	6.7	32
20	Grafting heteroelement-rich groups on graphene oxide: Tuning polarity and molecular interaction with bio-ionic liquid for enhanced lubrication. Journal of Colloid and Interface Science, 2017, 498, 47-54.	9.4	19
21	Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon. Journal of Environmental Management, 2017, 196, 168-177.	7.8	29
22	Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-Organized Amino Acid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 12138-12145.	8.0	49
23	Molecular insight into the Mullins effect: irreversible disentanglement of polymer chains revealed by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 19468-19477.	2.8	41
24	Moisture driven thermal conduction in polymer and polymer blends. Composites Science and Technology, 2017, 151, 115-123.	7.8	44
25	Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon, 2017, 111, 839-848.	10.3	140
26	The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst. Catalysis Communications, 2017, 89, 69-72.	3.3	14
27	Effect of Filler–Polymer Interface on Elastic Properties of Polymer Nanocomposites: A Molecular Dynamics Study. Tire Science and Technology, 2017, 45, 227-241.	0.4	4
28	Paving the Thermal Highway with Self-Organized Nanocrystals in Transparent Polymer Composites. ACS Applied Materials & Diterfaces, 2016, 8, 29080-29087.	8.0	35
29	Boosting Energy Efficiency of Nickel Cobaltite via Interfacial Engineering in Hierarchical Supercapacitor Electrode. Journal of Physical Chemistry C, 2016, 120, 23377-23388.	3.1	14
30	Molecular Transformation, Diffusion, and Assembling into Three-Dimensional Freestanding Tube Arrays via a Triphasic Reaction. Langmuir, 2016, 32, 11525-11531.	3.5	0
31	Enriching Heteroelements in Lignin as Lubricating Additives for Bioionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 3877-3887.	6.7	36
32	Confined molecular motion across liquid/liquid interfaces in a triphasic reaction towards free-standing conductive polymer tube arrays. Journal of Materials Chemistry A, 2016, 4, 6290-6294.	10.3	7
33	Green processing of plant biomass into mesoporous carbon as catalyst support. Chemical Engineering Journal, 2016, 295, 301-308.	12.7	55
34	Superamphiphobicity and electroactivity enabled dual physical/chemical protections in novel anticorrosive nanocomposite coatings. Polymer, 2016, 85, 37-46.	3.8	46
35	Ionic Grease Lubricants: Protic [Triethanolamine] [Oleic Acid] and Aprotic [Choline] [Oleic Acid]. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4977-4984.	8.0	45
36	Heterogeneous nucleation/growth of silver nanoparticles onto oxygenated mesoporous carbon: Alcohol effect and catalytic property. Catalysis Communications, 2016, 77, 65-69.	3.3	8

#	Article	IF	CITATIONS
37	Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Advances, 2016, 6, 2259-2269.	3.6	74
38	In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction. Applied Catalysis B: Environmental, 2016, 182, 306-315.	20.2	68
39	Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode. ACS Applied Materials & Diterfaces, 2015, 7, 12230-12237.	8.0	106
40	Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nanoparticles as a highly active catalyst. Green Chemistry, 2015, 17, 2515-2523.	9.0	114
41	[N-Methyl-2-pyrrolidone][C1–C4 carboxylic acid]: a novel solvent system with exceptional lignin solubility. Chemical Communications, 2015, 51, 13554-13557.	4.1	36
42	Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Advances, 2015, 5, 66067-66072.	3.6	68
43	Superhydrophobic polyaniline hollow spheres with mesoporous brain-like convex-fold shell textures. Journal of Materials Chemistry A, 2015, 3, 19299-19303.	10.3	28
44	Unveiling Mesopore Evolution in Carbonized Wood: Interfacial Separation, Migration, and Degradation of Lignin Phase. ACS Sustainable Chemistry and Engineering, 2015, 3, 2489-2495.	6.7	21
45	Carbon-protected Au nanoparticles supported on mesoporous TiO ₂ for catalytic reduction of p-nitrophenol. RSC Advances, 2014, 4, 29591-29594.	3.6	25