Omar A El Seoud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11913340/publications.pdf

Version: 2024-02-01

71102 102487 5,714 167 41 66 citations h-index g-index papers 173 173 173 4325 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Applications of Ionic Liquids in Carbohydrate Chemistry:  A Window of Opportunities. Biomacromolecules, 2007, 8, 2629-2647.	5.4	615
2	Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. Journal of Colloid and Interface Science, 2007, 313, 296-304.	9.4	269
3	Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. Journal of Colloid and Interface Science, 2010, 345, 1-11.	9.4	142
4	Tailored Media for Homogeneous Cellulose Chemistry: Ionic Liquid/Coâ€Solvent Mixtures. Macromolecular Materials and Engineering, 2011, 296, 483-493.	3.6	136
5	An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromolecular Chemistry and Physics, 2000, 201, 882-889.	2.2	126
6	Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose, 2019, 26, 139-184.	4.9	107
7	Surface active ionic liquids: Study of the micellar properties of 1-(1-alkyl)-3-methylimidazolium chlorides and comparison with structurally related surfactants. Journal of Colloid and Interface Science, 2011, 361, 186-194.	9.4	102
8	Solvatochromism in pure and binary solvent mixtures: effects of the molecular structure of the zwitterionic probe. Journal of Physical Organic Chemistry, 2000, 13, 679-687.	1.9	97
9	Effects of organized surfactant assemblies on acid-base equilibria. Advances in Colloid and Interface Science, 1989, 30, 1-30.	14.7	94
10	Cellulose Swelling by Aprotic and Protic Solvents: What are the Similarities and Differences?. Macromolecular Chemistry and Physics, 2008, 209, 1240-1254.	2.2	87
11	Understanding solvation. Pure and Applied Chemistry, 2009, 81, 697-707.	1.9	86
12	Influence of the Supramolecular Structure and Physicochemical Properties of Cellulose on Its Dissolution in a Lithium Chloride/N,N-Dimethylacetamide Solvent System. Biomacromolecules, 2005, 6, 2638-2647.	5.4	84
13	Thermodynamics of Micellization of Benzyl(2-acylaminoethyl)dimethylammonium Chloride Surfactants in Aqueous Solutions:Â A Conductivity and Titration Calorimetry Study. Langmuir, 2004, 20, 9551-9559.	3.5	74
14	Organic Esters of Cellulose: New Perspectives for Old Polymers. Advances in Polymer Science, 2005, , 103-149.	0.8	72
15	Solvatochromism in Cationic Micellar Solutions:  Effects of the Molecular Structures of the Solvatochromic Probe and the Surfactant Headgroup. Langmuir, 2001, 17, 652-658.	3.5	71
16	Microscopic Polarities of Interfacial Regions of Aqueous Cationic Micelles: Effects of Structures of the Solvatochromic Probe and the Surfactantâ€. Langmuir, 2000, 16, 35-41.	3.5	69
17	Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter?. Cellulose, 2008, 15, 371-392.	4.9	67
18	Solvation in pure and mixed solvents: Some recent developments. Pure and Applied Chemistry, 2007, 79, 1135-1151.	1.9	65

#	Article	IF	CITATIONS
19	Some aspects of acylation of cellulose under homogeneous solution conditions. Journal of Polymer Science Part A, 1999, 37, 1357-1363.	2.3	62
20	lonic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers, 2021, 13, 1100.	4.5	61
21	Acid—base indicator equilibria in the presence of aerosol-OT aggregates in heptane. Ion exchange in reversed micelles. Journal of Colloid and Interface Science, 1982, 88, 420-427.	9.4	59
22	Solvatochromism in aqueous micellar solutions: effects of the molecular structures of solvatochromic probes and cationic surfactants. Physical Chemistry Chemical Physics, 1999, 1, 1957-1964.	2.8	59
23	Fluorescence and Light-Scattering Studies of the Aggregation of Cationic Surfactants in Aqueous Solution:Â Effects of Headgroup Structure. Langmuir, 2000, 16, 3119-3123.	3.5	59
24	Solvatochromism in Pure Solvents: Effects of the Molecular Structure of the Probe. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 648-655.	0.9	58
25	Microwaveâ€assisted derivatization of cellulose in an ionic liquid: An efficient, expedient synthesis of simple and mixed carboxylic esters. Journal of Polymer Science Part A, 2010, 48, 134-143.	2.3	58
26	A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. Journal of Applied Polymer Science, 1999, 74, 1355-1360.	2.6	57
27	Use of NMR to probe the structure of water at interfaces of organized assemblies. Journal of Molecular Liquids, 1997, 72, 85-103.	4.9	56
28	FTIR and 1H NMR Studies of the Solubilization of Pure and Aqueous 1,2-Ethanediol in the Reverse Aggregates of Aerosol-OT. Langmuir, 2000, 16, 5573-5578.	3.5	56
29	Chemistry and Applications of Polysaccharide Solutions in Strong Electrolytes/Dipolar Aprotic Solvents: An Overview. Molecules, 2013, 18, 1270-1313.	3.8	56
30	Recent Advances in Solvents for the Dissolution, Shaping and Derivatization of Cellulose: Quaternary Ammonium Electrolytes and their Solutions in Water and Molecular Solvents. Molecules, 2018, 23, 511.	3.8	56
31	Sugar-Based Surfactants:Â Adsorption and Micelle Formation of Sodium Methyl 2-Acylamido-2-deoxy-6-O-sulfo-d-glucopyranosides. Langmuir, 2002, 18, 4362-4366.	3.5	52
32	First Study on the Thermo-Solvatochromism in Aqueous 1-(1-Butyl)-3-methylimidazolium Tetrafluoroborate: A Comparison between the Solvation by an Ionic Liquid and by Aqueous Alcohols. Journal of Physical Chemistry B, 2008, 112, 8330-8339.	2.6	49
33	Real Structure of Formamide Entrapped by AOT Nonaqueous Reverse Micelles:Â FT-IR and 1H NMR Studies. Journal of Physical Chemistry B, 2005, 109, 21209-21219.	2.6	48
34	Thermosolvatochromism of Merocyanine Polarity Indicators in Pure and Aqueous Solvents:  Relevance of Solvent Lipophilicity. Journal of Organic Chemistry, 2006, 71, 9068-9079.	3.2	48
35	Drugâ€Induced Micelleâ€toâ€Vesicle Transition of a Cationic Gemini Surfactant: Potential Applications in Drug Delivery. ChemPhysChem, 2018, 19, 865-872.	2.1	47
36	Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose, 2011, 18, 385-392.	4.9	46

#	Article	IF	CITATIONS
37	Cellulose Regeneration and Chemical Recycling: Closing the "Cellulose Gap―Using Environmentally Benign Solvents. Macromolecular Materials and Engineering, 2020, 305, 1900832.	3.6	46
38	Synthesis and Aggregation of Benzyl (2-acylaminoethyl) dimethylammonium Chloride Surfactants. Langmuir, 2003, 19, 238-243.	3.5	45
39	Solvation in Binary Mixtures of Water and Polar Aprotic Solvents: Â Theoretical Calculations of the Concentrations of Solventâ 'Water Hydrogen-Bonded Species and Application to Thermosolvatochromism of Polarity Probes. Journal of Physical Chemistry B, 2007, 111, 6173-6180.	2.6	45
40	Thermo-solvatochromism of betaine dyes in aqueous alcohols: explicit consideration of the water-alcohol complex. Journal of Physical Organic Chemistry, 2003, 16, 691-699.	1.9	44
41	Thermoâ€Solvatochromism of Merocyanine Polarity Probes – What Are the Consequences of Increasing Probe Lipophilicity through Annelation?. European Journal of Organic Chemistry, 2008, 2008, 1165-1180.	2.4	44
42	lonic-liquid-based surfactants with unsaturated head group: synthesis and micellar properties of 1-(n-alkyl)-3-vinylimidazolium bromides. Colloid and Polymer Science, 2015, 293, 3213-3224.	2.1	43
43	Acid-base indicator equilibria in aerosol-OT reversed micelles in heptane. The use of buffers. Journal of Colloid and Interface Science, 1983, 95, 163-171.	9.4	41
44	Kinetics of the pH-independent hydrolysis of 4-nitrophenyl chloroformate in aqueous micellar solutions: effects of the charge and structure of the surfactant. Journal of Physical Organic Chemistry, 1999, 12, 325-332.	1.9	39
45	Drug induced micelle-to-vesicle transition in aqueous solutions of cationic surfactants. RSC Advances, 2017, 7, 3861-3869.	3.6	39
46	Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. Journal of Biotechnology, 2012, 157, 246-252.	3.8	38
47	Cellulose in Ionic Liquids and Alkaline Solutions: Advances in the Mechanisms of Biopolymer Dissolution and Regeneration. Polymers, 2019, 11, 1917.	4.5	38
48	Application of 1â€Allylâ€3â€(1â€butyl)imidazolium Chloride in the Synthesis of Cellulose Esters: Properties of the Ionic Liquid, and Comparison with Other Solvents. Macromolecular Bioscience, 2009, 9, 813-821.	4.1	37
49	Cellulose dissolution in lithium chloride/N,N-dimethylacetamide solvent system: Relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. Journal of Polymer Science Part A, 1999, 37, 3738-3744.	2.3	35
50	Solvation in aqueous binary mixtures: consequences of the hydrophobic character of the ionic liquids and the solvatochromic probes. New Journal of Chemistry, 2012, 36, 2353.	2.8	35
51	Efficient Cellulose Solvent: Quaternary Ammonium Chlorides. Macromolecular Rapid Communications, 2013, 34, 1580-1584.	3.9	35
52	Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. International Journal of Biological Macromolecules, 2021, 167, 687-718.	7.5	35
53	Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100079.	2.6	35
54	1H and 13C NMR Study on the Aggregation of (2-Acylaminoethyl)trimethylammonium Chloride Surfactants in D2O. Langmuir, 2003, 19, 9645-9652.	3.5	34

#	Article	IF	CITATIONS
55	Thermo-Switchable de Novo Ionic Liquid-Based Gelators with Dye-Absorbing and Drug-Encapsulating Characteristics. ACS Omega, 2018, 3, 12068-12078.	3.5	34
56	Solubilization of Pure and Aqueous 1,2,3-Propanetriol by Reverse Aggregates of Aerosolâ OT in Isooctane Probed by FTIR and 1H NMR Spectroscopy. Langmuir, 2001, 17, 1847-1852.	3.5	33
57	Kinetics of the pH-Independent Hydrolysis of Bis(2,4-dinitrophenyl) Carbonate in Acetonitrileâ^'Water Mixtures:Â Effects of the Structure of the Solvent. Journal of Organic Chemistry, 1997, 62, 5928-5933.	3.2	31
58	Thermodynamics of micellization of cationic surfactants in aqueous solutions: consequences of the presence of the 2-acylaminoethyl moiety in the surfactant head group. Colloid and Polymer Science, 2004, 282, 1026-1032.	2.1	30
59	Thermo-solvatochromism in aqueous alcohols: effects of the molecular structures of the alcohol and theÂsolvatochromic probe. Journal of Physical Organic Chemistry, 2002, 15, 403-412.	1.9	28
60	Thermo-solvatochromism of zwitterionic probes in aqueous aliphatic alcohols and in aqueous 2-alkoxyethanols: relevance to the enthalpies of activation of chemical reactions. Journal of Physical Organic Chemistry, 2005, 18, 398-407.	1.9	28
61	Proton and carbon-13 NMR study of the aggregation of benzyl(2-acylaminoethyl)dimethylammonium chloride surfactants in D2O. Physical Chemistry Chemical Physics, 2003, 5, 3489.	2.8	27
62	A novel, convenient, quinoline-based merocyanine dye: probing solvation in pure and mixed solvents and in the interfacial region of an anionic micelle. Journal of Physical Organic Chemistry, 2005, 18, 1072-1085.	1.9	27
63	Thermo-solvatochromism in binary mixtures of water and ionic liquids: on the relative importance of solvophobic interactions. Physical Chemistry Chemical Physics, 2010, 12, 1764.	2.8	27
64	Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: Application of UV–vis spectroscopy (dye solvatochromism) and FTIR. Carbohydrate Polymers, 2011, 83, 1285-1292.	10.2	27
65	First report on the kinetics of the uncatalyzed esterification of cellulose under homogeneous reaction conditions: a rationale for the effect of carboxylic acid anhydride chain-length on the degree of biopolymer substitution. Cellulose, 2012, 19, 199-207.	4.9	27
66	A Proton NMR Study on the Structure of Water at Interfaces of Cationic Micelles. Effects of the Nature of the Surfactant Headgroup. Langmuir, 1994, 10, 653-657.	3.5	26
67	Sugar-based cationic surfactants: Synthesis and aggregation of methyl 2-acylamido-6-trimethylammonio-2,6-dideoxy-d-glucopyranoside chlorides. Journal of Surfactants and Detergents, 2001, 4, 395-400.	2.1	26
68	Thermosolvatochromism of Betaine Dyes Revisited:Â Theoretical Calculations of the Concentrations of Alcoholâr Water Hydrogen-bonded Species and Application to Solvation in Aqueous Alcohols. Journal of Physical Chemistry A, 2006, 110, 10287-10295.	2.5	26
69	Ionic Liquid-Based Catanionic Coacervates: Novel Microreactors for Membrane-Free Sequestration of Dyes and Curcumin. ACS Omega, 2018, 3, 17751-17761.	3.5	26
70	Binary mixtures of ionic liquids-DMSO as solvents for the dissolution and derivatization of cellulose: Effects of alkyl and alkoxy side chains. Carbohydrate Polymers, 2019, 212, 206-214.	10.2	26
71	Solvatochromism in Alcoholâ€Water Mixtures: Effects of the Molecular Structure of the Probe. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 105-113.	0.9	25
72	Thermo-solvatochromism of zwitterionic probes in aqueous alcohols: effects of the properties of the probe and the alcohol. Physical Chemistry Chemical Physics, 2003, 5, 5378-5385.	2.8	25

#	Article	IF	Citations
73	Some aspects of acetylation of untreated and mercerized sisal cellulose. Journal of the Brazilian Chemical Society, 2010, 21, 71-77.	0.6	25
74	Microwaveâ€Assisted Derivatization of Cellulose, 2 – The Surprising Effect of the Structure of Ionic Liquids on the Dissolution and Acylation of the Biopolymer. Macromolecular Chemistry and Physics, 2011, 212, 2541-2550.	2.2	25
75	Kinetics and mechanism of imidazole-catalyzed acylation of cellulose in LiCl/N,N-dimethylacetamide. Carbohydrate Polymers, 2013, 92, 997-1005.	10.2	25
76	Solvatochromism in binary solvent mixtures: Effects of the molecular structure of the probe. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 902-909.	0.9	24
77	Solvatochromism in Binary Mixtures: First Report on a Solvation Free Energy Relationship between Solvent Exchange Equilibrium Constants and the Properties of the Medium. Journal of Physical Chemistry B, 2009, 113, 9512-9519.	2.6	23
78	Dependence of cellulose dissolution in quaternary ammonium-based ionic liquids/DMSO on the molecular structure of the electrolyte. Carbohydrate Polymers, 2019, 205, 524-532.	10.2	23
79	A Proton and Carbon-13 NMR Study on the State of Water Solubilized by Detergent Aggregates in Organic Solvents. Journal of Colloid and Interface Science, 1994, 163, 87-93.	9.4	22
80	Kinetics of the pH-independent hydrolyses of 4-nitrophenyl chloroformate and 4-nitrophenyl heptafluorobutyrate in water-acetonitrile mixtures: consequences of solvent composition and ester hydrophobicity. Journal of Physical Organic Chemistry, 2006, 19, 793-802.	1.9	22
81	Introducing education for sustainable development in the undergraduate laboratory: quantitative analysis of bioethanol fuel and its blends with gasoline by using solvatochromic dyes. Chemistry Education Research and Practice, 2012, 13, 147-153.	2.5	22
82	Bio-based Films from Linter Cellulose and Its Acetates: Formation and Properties. Materials, 2013, 6, 2410-2435.	2.9	22
83	Imidazole-catalyzed esterification of cellulose in ionic liquid/molecular solvents: A multi-technique approach to probe effects of the medium. Industrial Crops and Products, 2015, 77, 180-189.	5.2	22
84	Kinetics and mechanisms of the reactions of benzoyl derivatives of nucleophiles: dependence of the solvation requirement of the reaction on the structures of the nucleophile and the acyl group. Journal of Physical Organic Chemistry, 2005, 18, 173-182.	1.9	20
85	Probing the dependence of the properties of cellulose acetates and their films on the degree of biopolymer substitution: use of solvatochromic indicators and thermal analysis. Cellulose, 2010, 17, 937-951.	4.9	20
86	Application of Microelectrode Voltammetry to Study the Properties of Surfactant Solutions: Alkyltrimethylammonium Bromides. Journal of Physical Chemistry B, 2010, 114, 857-862.	2.6	20
87	Use of Microdevices To Determine the Diffusion Coefficient of Electrochemically Generated Species:  Application to Binary Solvent Mixtures and Micellar Solutions. Journal of Physical Chemistry B, 2007, 111, 12478-12484.	2.6	19
88	Aggregation of cationic surfactants in D ₂ O: A proton NMR study on effects of the structure of the headgroup. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1933-1941.	0.9	18
89	Have Biofuel, Will Travel: A Colorful Experiment and a Different Approach To Teach the Undergraduate Laboratory. Journal of Chemical Education, 2011, 88, 1293-1297.	2.3	18
90	Perichromism: A powerful tool for probing the properties of cellulose and its derivatives. Carbohydrate Polymers, 2013, 93, 129-134.	10.2	18

#	Article	IF	CITATIONS
91	\hat{l}^2 -Carotene: A green, inexpensive, and convenient solvatochromic probe for the determination of solvent polarizability. Dyes and Pigments, 2013, 96, 16-24.	3.7	18
92	Acylation of cellulose in a novel solvent system: Solution of dibenzyldimethylammonium fluoride in DMSO. Carbohydrate Polymers, 2014, 101, 444-450.	10.2	18
93	Temperatureâ€Responsive Low Molecular Weight Ionic Liquid Based Gelator: An Approach to Fabricate an Antiâ€Cancer Drug‣oaded Hybrid Ionogel. ChemSystemsChem, 2020, 2, e1900053.	2.6	18
94	Proton NMR studies on the structure of water in ionic and nonionic waterâ€inâ€oil microemulsions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1147-1152.	0.9	17
95	Proton NMR Studies on the Structure of Water at Interfaces of Aqueous Micelles. Part 4: Effects of Cationic and Zwitterionic Headgroups. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1214-1220.	0.9	16
96	Sugar-based anionic surfactants: synthesis and micelle formation of sodium methyl 2-acylamido-2-deoxy-6-O-sulfo-d-glucopyranosides. Carbohydrate Research, 2001, 332, 95-102.	2.3	16
97	Surfactants with an amide group "spacerâ€. Synthesis of 3-(acylaminopropyl)trimethylammonium chlorides and their aggregation in aqueous solutions. Journal of Colloid and Interface Science, 2006, 304, 474-485.	9.4	16
98	Novel solvents for cellulose: Use of dibenzyldimethylammonium fluoride/dimethyl sulfoxide (DMSO) as solvent for the etherification of the biopolymer and comparison with tetra(1-butyl)ammonium fluoride/DMSO. Industrial Crops and Products, 2014, 54, 185-191.	5.2	16
99	Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: Quantification of the relative importance of hydrogen bonding and hydrophobic interactions. Journal of Molecular Liquids, 2021, 322, 114848.	4.9	16
100	Kinetic Solvent Isotope Effect: A Simple, Multipurpose Physical Chemistry Experiment. Journal of Chemical Education, 1997, 74, 562.	2.3	15
101	Effects of charge and structure of surfactants on kinetics of water reactions: the pH-independent hydrolysis of bis (2,4-dinitrophenyl) carbonate. Journal of Molecular Liquids, 1999, 80, 231-251.	4.9	15
102	Kinetics and mechanism of phosphate-catalyzed hydrolysis of benzoate esters: comparison with nucleophilic catalysis by imidazole and o-iodosobenzoate. Perkin Transactions II RSC, 2002, , 1053-1058.	1.1	15
103	A convenient solvent system for cellulose dissolution and derivatization: Mechanistic aspects of the acylation of the biopolymer in tetraallylammonium fluoride/dimethyl sulfoxide. Carbohydrate Polymers, 2011, 86, 1395-1402.	10.2	15
104	Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose. Cellulose, 2013, 20, 1109-1119.	4.9	15
105	Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents. Cellulose, 2014, 21, 1193-1204.	4.9	15
106	Probing Cellulose Acetylation in Binary Mixtures of an Ionic Liquid with Dimethylsulfoxide and Sulfolane by Chemical Kinetics, Viscometry, Spectroscopy, and Molecular Dynamics Simulations. Macromolecular Chemistry and Physics, 2015, 216, 2368-2376.	2.2	15
107	Notes on the determination of the apparent pka values of acid-base indicators in micellar systems. Journal of Colloid and Interface Science, 1983, 93, 289-292.	9.4	14
108	Proton NMR study on the structure of water in the Stern layer of negatively charged micelles. The Journal of Physical Chemistry, 1987, 91, 2950-2954.	2.9	14

#	Article	IF	CITATIONS
109	A proton NMR study on the structure of water of hydration of aqueous micelles. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 180-183.	0.9	14
110	Optimization of micellar catalysis of nucleophilic substitution reactions in buffered solutions of cetyltrimethylammonium halide surfactants, part 2: buffers in the pH range 7-8. Journal of Physical Organic Chemistry, 2001, 14, 823-831.	1.9	14
111	Experimental and theoretical studies on solvation in aqueous solutions of ionic liquids carrying different side chains: the n-butyl-group versus the methoxyethyl group. RSC Advances, 2017, 7, 15952-15963.	3.6	14
112	Kinetics of the reversible hydration of 1,3-dichloroacetone catalysed by aerosol-OT-solubilized acids and bases in carbon tetrachloride. Journal of the Chemical Society Perkin Transactions II, 1980, , 127.	0.9	13
113	Surface Properties of Calcinated Titanium Dioxide Probed by Solvatochromic Indicators: Relevance to Catalytic Applications. Journal of Physical Chemistry C, 2010, 114, 10436-10443.	3.1	13
114	FT-IR and 1H NMR studies of the state of solubilized water in water-in-oil microemulsions stabilized by mixtures of single- and double-tailed cationic surfactants. Journal of Colloid and Interface Science, 2013, 393, 210-218.	9.4	13
115	Solvatochromic and Solubility Parameters of Solvents: Equivalence of the Scales and Application to Probe the Solubilization of Asphaltenes. Energy & Energy & 2016, 30, 4644-4652.	5.1	13
116	Dependence of cellulose dissolution in quaternary ammonium acetates/DMSO on the molecular structure of the electrolyte: use of solvatochromism, micro-calorimetry, and molecular dynamics simulations. Cellulose, 2020, 27, 3565-3580.	4.9	13
117	Acidities and Basicities in Reversed Micellar Systems. , 1984, , 81-93.		13
118	Alkylammonium dialkylarsiante surfactants in organic solvents: Aggregation and water solubilization studies. Journal of Colloid and Interface Science, 1983, 91, 320-328.	9.4	12
119	Solvation in Pure Liquids: What Can Be Learned from the Use of Pairs of Indicators?. Journal of Physical Chemistry B, 2008, 112, 14976-14984.	2.6	12
120	Understanding Solvation: Comparison of Reichardt's Solvatochromic Probe and Related Molecular "Core―Structures. Journal of Chemical & Data, 2019, 64, 2213-2220.	1.9	12
121	Concentration- and Temperature-Responsive Reversible Transition in Amide-Functionalized Surface-Active Ionic Liquids: Micelles to Vesicles to Organogel. ACS Omega, 2020, 5, 24272-24284.	3.5	12
122	Dissolution of Silk Fibroin in Mixtures of Ionic Liquids and Dimethyl Sulfoxide: On the Relative Importance of Temperature and Binary Solvent Composition. Polymers, 2022, 14, 13.	4.5	12
123	A microelectrode voltammetric study of the diffusion of CTABr aggregates in aqueous solutions. Electrochimica Acta, 2004, 50, 1065-1070.	5.2	11
124	Understanding the efficiency of ionic liquids–DMSO as solvents for carbohydrates: use of solvatochromic- and related physicochemical properties. New Journal of Chemistry, 2020, 44, 14906-14914.	2.8	11
125	Kinetics and mechanism of the imidazole-catalysed hydrolysis of substitutedN-benzoylimidazoles. Journal of Physical Organic Chemistry, 1994, 7, 431-436.	1.9	10
126	Nucleophilic Reactivity of the CTACl-Micelle-Bound Fluoride Ion:Â The Influence of Water Concentration and Ionic Strength at the Micellar Interface. Langmuir, 2003, 19, 10666-10672.	3.5	10

#	Article	IF	Citations
127	Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems. Cellulose, 2006, 13, 581-592.	4.9	10
128	Employing perichromism for probing the properties of carboxymethyl cellulose films: an expedient, accurate method for the determination of the degree of substitution of the biopolymer derivative. Cellulose, 2012, 19, 151-159.	4.9	10
129	Successful Application of an Ionic Liquid Carrying the Fluoride Counterâ€ion in Biomacromolecular Chemistry: Microwaveâ€Assisted Acylation of Cellulose in the Presence of 1â€Allylâ€3â€methylimidazolium Fluoride/DMSO Mixtures. Macromolecular Bioscience, 2013, 13, 191-202.	4.1	10
130	Effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on the micellar properties of [butanediyl-1,4-bis(dimethyldodecylammonium bromide)] gemini surfactant in aqueous solution. Colloid and Polymer Science, 2017, 295, 2351.	2.1	10
131	Etherification of Cellulose. Springer Series on Polymer and Composite Materials, 2018, , 429-477.	0.7	10
132	Assessing cellulose dissolution efficiency in solvent systems based on a robust experimental quantification protocol and enthalpy data. Holzforschung, 2019, 73, 1103-1112.	1.9	10
133	Large-scale chromatographic purification of commercial alkylphenol polyoxyethylene nonionic detergents. Journal of Colloid and Interface Science, 1980, 76, 265-267.	9.4	9
134	Lysozyme gelation in mixtures of tetramethylurea with protic solvents: Use of solvatochromic indicators to probe medium microstructure and solute–solvent interactions. Journal of Molecular Structure, 2007, 841, 51-60.	3.6	9
135	Effects of KBr and n-decanol on the properties of cetyltrimethylammonium bromide micelles in aqueous solutions: A microelectrode voltammetric study. Journal of Electroanalytical Chemistry, 2007, 603, 275-280.	3.8	9
136	Imidazole-Catalyzed Hydrolysis of Substituted Benzoate Esters. A Detailed Kinetic and Mechanistic Study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1610-1615.	0.9	8
137	Kinetics and mechanism of the hydrolysis of substituted phenyl benzoates catalyzed by theo-iodosobenzoate anion. Journal of Physical Organic Chemistry, 1995, 8, 637-646.	1.9	8
138	2-(Acylaminoethyl)trimethylammonium chloride surfactants: synthesis and properties of aqueous solutions. Colloid and Polymer Science, 2003, 282, 21-31.	2.1	8
139	On the effects of head-group volume on the adsorption and aggregation of 1-(n-hexadecyl)-3-Cm-imidazolium bromide and chloride surfactants in aqueous solutions. Journal of Molecular Liquids, 2021, 328, 115478.	4.9	8
140	On the Determination of the Fractionation Factors of Aqueous Bromide and Iodide Ions by Proton NMR. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1984, 88, 742-744.	0.9	7
141	Cellulose carboxylate/tosylate mixed esters: Synthesis, properties and shaping into microspheres. Carbohydrate Polymers, 2016, 152, 79-86.	10.2	7
142	Cellulose Esters. Springer Series on Polymer and Composite Materials, 2018, , 293-427.	0.7	7
143	Acid-Base Equilibria of Hydrophilic Indicators in Water-in-Oil Microemulsions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 882-887.	0.9	6
144	Effect of a positively charged water-in-oil microemulsion on the apparent pKa of a hydrophilic indicator. Journal of Colloid and Interface Science, 1991, 141, 295-298.	9.4	6

#	Article	IF	Citations
145	Kinetics of Surfactant-Mediated Breakdown of N-(4-Nitrophenyl) perfluorononanamide Aggregates in Aqueous Solutions. Langmuir, 2002, 18, 8786-8791.	3.5	6
146	Solvatochromism of 2-(N,N -dimethylamino)-7-nitrofluorene and the natural dye \hat{I}^2 -carotene: application for the determination of solvent dipolarity and polarizability. Journal of Physical Organic Chemistry, 2013, 26, 280-285.	1.9	6
147	Dissolution Capacity of Novel Cellulose Solvents Based on Triethyloctylammonium Chloride. Macromolecular Chemistry and Physics, 2017, 218, 1700208.	2.2	6
148	Solvation by aqueous solutions of imidazole-based ionic liquids: 2- A comparison between alkyl and alkoxy side-chains. Fluid Phase Equilibria, 2017, 451, 48-56.	2.5	6
149	Dissolution of Asphaltene in Binary Mixtures of Organic Solvents and Model Maltenes: Unambiguous Evidence for Asphaltene Preferential Solvation and Relevance to Assessing the Efficiency of Additives for Asphaltene Stabilization. Energy & Fuels, 2019, 33, 58-67.	5.1	6
150	Cellulose, chitin and silk: the cornerstones of green composites. Emergent Materials, 2022, 5, 785-810.	5.7	6
151	Evidence for the effect of a reversed micelle on the transition state for the hydration of 1,3-dichloroacetone. Journal of Organic Chemistry, 1981, 46, 1231-1232.	3.2	5
152	A proton magnetic resonance study of the deuterium-protium fractionation in aqueous solutions of alkali-metal chlorides. The Journal of Physical Chemistry, 1984, 88, 2669-2671.	2.9	5
153	Cellulose Activation and Dissolution. Springer Series on Polymer and Composite Materials, 2018, , 173-257.	0.7	5
154	Structure and Properties of Cellulose and Its Derivatives. Springer Series on Polymer and Composite Materials, 2018, , 39-172.	0.7	4
155	Principles of Cellulose Derivatization. Springer Series on Polymer and Composite Materials, 2018, , 259-292.	0.7	4
156	Surprising Insensitivity of Homogeneous Acetylation of Cellulose Dissolved in Triethyl(<i>n</i> i>ni>a€octyl)ammonium Chloride/Molecular Solvent on the Solvent Polarity. Macromolecular Materials and Engineering, 2018, 303, 1800032.	3.6	4
157	Cellulose Dissolution in Mixtures of Ionic Liquids and Dimethyl Sulfoxide: A Quantitative Assessment of the Relative Importance of Temperature and Composition of the Binary Solvent. Molecules, 2020, 25, 5975.	3.8	4
158	Electrospinning of cellulose carboxylic esters synthesized under homogeneous conditions: Effects of the ester degree of substitution and acyl group chain length on the morphology of the fabricated mats. Journal of Molecular Liquids, 2021, 339, 116745.	4.9	4
159	A Proton NMR Study of the Deuteriumâ€Protium Fractionation in Aqueous Solutions of Some Organic Ions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 825-828.	0.9	3
160	Interfacial ion exchange between monovalent and divalent anions in cationic micelles, revised in the light of correlation analysis. Journal of Physical Organic Chemistry, 2005, 18, 850-855.	1.9	3
161	FTIR and 1H NMR Studies on the Structure of Water Solubilized by Reverse Aggregates of Dodecyltrimethylammonium Bromide; Didodecyldimethylammonium Bromide, and Their Mixtures in Organic Solvents., 2008,, 101-110.		2
162	Successful Approach to Mimic the Solvent Power of Maltenes Based on SARA Analysis, Solvatochromic and Solubility Parameters. Energy & Energy & 2018, 32, 3281-3289.	5.1	2

#	Article	IF	CITATIONS
163	Effects of head-group volume on the thermodynamic parameters and species distribution of ionic liquid-based surfactants in water: 1-(n-hexadecyl)-3-alkylimidazolium bromides and chlorides. Journal of Molecular Liquids, 2022, 362, 119681.	4.9	2
164	Thermosolvatochromism of Betaine Dyes Revisited:Â Theoretical Calculations of the Concentrations of Alcoholâ Water Hydrogen-bonded Species and Application to Solvation in Aqueous Alcohols. Journal of Physical Chemistry A, 2006, 110, 13122-13122.	2.5	1
165	Learning Chemistry from Good and (Why Not?) Problematic Results: Kinetics of the pH-Independent Hydrolysis of 4-Nitrophenyl Chloroformate. Journal of Chemical Education, 2015, 92, 752-756.	2.3	1
166	Benzyl (3-Acylaminopropyl) Dimethylammonium Chloride Surfactants: Structure and Some Properties of the Micellar Aggregates., 0,, 131-141.		1
167	A Simple Approach to Calculate the Micelle Aggregation Numbers of Ionic Liquid-Based Surfactants: Electrochemical Behavior of Aggregate-Solubilized Ferrocene Studied by Microelectrode Voltammetry. Journal of the Electrochemical Society, 2014, 161, H660-H662.	2.9	0