
Sudha K Iyengar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191308/publications.pdf Version: 2024-02-01

SUDHA K IVENCAR

#	Article	IF	CITATIONS
1	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	9.4	687
2	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	9.4	239
3	Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nature Genetics, 2012, 44, 1142-1146.	9.4	196
4	Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes. PLoS Genetics, 2014, 10, e1004517.	1.5	191
5	School-Age Follow-Up of Children With Childhood Apraxia of Speech. Language, Speech, and Hearing Services in Schools, 2004, 35, 122-140.	0.7	167
6	Dissection of Genomewide-Scan Data in Extended Families Reveals a Major Locus and Oligogenic Susceptibility for Age-Related Macular Degeneration. American Journal of Human Genetics, 2004, 74, 20-39.	2.6	162
7	Genome-Wide Scans for Diabetic Nephropathy and Albuminuria in Multiethnic Populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes, 2007, 56, 1577-1585.	0.3	140
8	Markers of Inflammation, Oxidative Stress, and Endothelial Dysfunction and the 20-Year Cumulative Incidence of Early Age-Related Macular Degeneration. JAMA Ophthalmology, 2014, 132, 446.	1.4	122
9	Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell, 2017, 170, 199-212.e20.	13.5	121
10	Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genetics, 2015, 11, e1005352.	1.5	118
11	Genetics of age-related macular degeneration (AMD). Human Molecular Genetics, 2017, 26, R45-R50.	1.4	109
12	The Genetic Basis of Complex Traits. Methods in Molecular Biology, 2007, 376, 71-84.	0.4	103
13	Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nature Communications, 2017, 8, 14898.	5.8	101
14	Prediction of Age-related Macular Degeneration in the General Population. Ophthalmology, 2013, 120, 2644-2655.	2.5	84
15	Harmonizing the Classification of Age-related Macular Degeneration in the Three-Continent AMD Consortium. Ophthalmic Epidemiology, 2014, 21, 14-23.	0.8	83
16	Lipids, Lipid Genes, and Incident Age-Related Macular Degeneration: The Three Continent Age-Related Macular Degeneration Consortium. American Journal of Ophthalmology, 2014, 158, 513-524.e3.	1.7	81
17	Electrocardiographic Prediction of Abnormal Genotype in Congenital Long QT Syndrome: Experience in 101 Related Family Members. Journal of Cardiovascular Electrophysiology, 2001, 12, 455-461.	0.8	79
18	A Multicenter Study to Map Genes for Fuchs Endothelial Corneal Dystrophy: Baseline Characteristics and Heritability. Cornea, 2012, 31, 26-35.	0.9	78

SUDHA K IYENGAR

#	Article	IF	CITATIONS
19	Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14485-14490.	3.3	69
20	Combined Effects of Complement Factor H Genotypes, Fish Consumption, and Inflammatory Markers on Long-Term Risk for Age-related Macular Degeneration in a Cohort. American Journal of Epidemiology, 2008, 169, 633-641.	1.6	69
21	Linkage Analysis of Candidate Loci for End-Stage Renal Disease due to Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, S195-S201.	3.0	63
22	Cigarette Smoking and the Natural History of Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1949-1955.	2.5	63
23	Genetic Susceptibility, Dietary Antioxidants, and Long-Term Incidence of Age-Related Macular Degeneration in Two Populations. Ophthalmology, 2014, 121, 667-675.	2.5	59
24	Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes, 2019, 68, 441-456.	0.3	54
25	Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Human Molecular Genetics, 2014, 23, 5827-5837.	1.4	52
26	Risk Alleles in CFH and ARMS2 and the Long-term Natural History of Age-Related Macular Degeneration. JAMA Ophthalmology, 2013, 131, 383.	1.4	48
27	A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration. PLoS ONE, 2011, 6, e25598.	1.1	46
28	Joint Associations of Diet, Lifestyle, andÂGenes with Age-Related MacularÂDegeneration. Ophthalmology, 2015, 122, 2286-2294.	2.5	44
29	Exome Array Analysis Identifies CAV1/CAV2 as a Susceptibility Locus for Intraocular Pressure. Investigative Ophthalmology and Visual Science, 2015, 56, 544-551.	3.3	43
30	Association Between Vitamin D Status and Age-Related Macular Degeneration by Genetic Risk. JAMA Ophthalmology, 2015, 133, 1171.	1.4	43
31	Five-year progression of unilateral age-related macular degeneration to bilateral involvement: the Three Continent AMD Consortium report. British Journal of Ophthalmology, 2017, 101, 1185-1192.	2.1	38
32	A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.	2.0	36
33	Effect of the Y402H Variant in the Complement Factor H Gene on the Incidence and Progression of Age-Related Macular Degeneration. JAMA Ophthalmology, 2012, 130, 1169.	2.6	35
34	Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Human Molecular Genetics, 2014, 23, 6119-6128.	1.4	35
35	Analyses of Cross Species Polymerase Chain Reaction Products to Infer the Ancestral State of Human Polymorphisms. DNA Sequence, 1998, 8, 317-327.	0.7	34

Sunlight Exposure, Pigmentation, and Incident Age-Related Macular Degeneration. , 2014, 55, 5855.

32

SUDHA K IYENGAR

#	Article	IF	CITATIONS
37	Severity of Age-Related Macular Degeneration in 1 Eye and the Incidence and Progression of Age-Related Macular Degeneration in the Fellow Eye. JAMA Ophthalmology, 2015, 133, 125.	1.4	31
38	<i>APOL1</i> Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program. JAMA Internal Medicine, 2022, 182, 386.	2.6	31
39	Reading Outcomes for Individuals With Histories of Suspected Childhood Apraxia of Speech. American Journal of Speech-Language Pathology, 2019, 28, 1432-1447.	0.9	29
40	A Genome-Wide Search for Linkage of Estimated Glomerular Filtration Rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND). PLoS ONE, 2013, 8, e81888.	1.1	24
41	Mining the Genome for Susceptibility to Diabetic Nephropathy: The Role of Large-Scale Studies and Consortia. Seminars in Nephrology, 2007, 27, 208-222.	0.6	23
42	Psychosocial co-morbidities in adolescents and adults with histories of communication disorders. Journal of Communication Disorders, 2016, 61, 60-70.	0.8	20
43	Diversity of Ocular Surface Bacterial Microbiome Adherent to Worn Contact Lenses and Bacterial Communities Associated With Care Solution Use. Eye and Contact Lens, 2019, 45, 331-339.	0.8	20
44	Speech-Sound Disorders and Attention-Deficit/Hyperactivity Disorder Symptoms. Topics in Language Disorders, 2012, 32, 247-263.	0.9	18
45	Heritability and longitudinal outcomes of spelling skills in individuals with histories of early speech and language disorders. Learning and Individual Differences, 2018, 65, 1-11.	1.5	18
46	Small Drusen and Age-Related Macular Degeneration: The Beaver Dam Eye Study. Journal of Clinical Medicine, 2015, 4, 425-440.	1.0	17
47	A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLoS Genetics, 2022, 18, e1010113.	1.5	16
48	Feature-driven classification reveals potential comorbid subtypes within childhood apraxia of speech. BMC Pediatrics, 2020, 20, 519.	0.7	15
49	Association of Kidney Comorbidities and Acute Kidney Failure With Unfavorable Outcomes After COVID-19 in Individuals With the Sickle Cell Trait. JAMA Internal Medicine, 0, , .	2.6	15
50	Approaches to understanding susceptibility to nephropathy: From genetics to genomics. Kidney International, 2002, 61, S61-S67.	2.6	14
51	The Quest for Genes Causing Complex Traits in Ocular Medicine. JAMA Ophthalmology, 2007, 125, 11.	2.6	14
52	Joint Contribution of Genetic Susceptibility and Modifiable Factors to the Progression of Age-Related Macular Degeneration over 10 Years. Ophthalmology Retina, 2018, 2, 684-693.	1.2	14
53	Differential Long-Term Outcomes for Individuals With Histories of Preschool Speech Sound Disorders. American Journal of Speech-Language Pathology, 2019, 28, 1582-1596.	0.9	13
54	Mitochondrial Polymorphism A10398G and Haplogroup I Are Associated With Fuchs' Endothelial Corneal Dystrophy. , 2014, 55, 4577.		12

SUDHA K IYENGAR

#	Article	IF	CITATIONS
55	Associations Between Methylenetetrahydrofolate Reductase Polymorphisms, Serum Homocysteine Levels, and Incident Cortical Cataract. JAMA Ophthalmology, 2016, 134, 522.	1.4	11
56	Pooling Data and Linkage Analysis in the Chromosome 5q Candidate Region for Asthma. Genetic Epidemiology, 2001, 21, S103-8.	0.6	10
57	Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Communications Biology, 2020, 3, 755.	2.0	10
58	Psychosocial Comorbidities in Adolescents With Histories of Childhood Apraxia of Speech. American Journal of Speech-Language Pathology, 2021, 30, 1-17.	0.9	9
59	Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Molecular Vision, 2016, 22, 783-96.	1.1	8
60	Gene Set Enrichment Analsyes Identify Pathways Involved in Genetic Risk for Diabetic Retinopathy. American Journal of Ophthalmology, 2022, 233, 111-123.	1.7	7
61	Association between genes regulating neural pathways for quantitative traits of speech and language disorders. Npj Genomic Medicine, 2021, 6, 64.	1.7	7
62	Improved Evidence for Linkage on 6p and 5p with Retrospective Pooling of Data from Three Asthma Genome Screens. Genetic Epidemiology, 2001, 21, S130-5.	0.6	5
63	Aldose Reductase Polymorphisms, Fasting Blood Glucose, and Age-Related Cortical Cataract. , 2018, 59, 4755.		5
64	The Application of the HapMap to Diabetic Nephropathy and Other Causes of Chronic Renal Failure. Seminars in Nephrology, 2007, 27, 223-236.	0.6	4
65	The fa leptin receptor mutation and the heritability of respiratory frequency in a Brown Norway and Zucker intercross. Journal of Applied Physiology, 2004, 97, 811-820.	1.2	3
66	Exome Array Analysis of Nuclear Lens Opacity. Ophthalmic Epidemiology, 2018, 25, 215-219.	0.8	3
67	Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits—The Hispanic/Latino Anthropometry Consortium. Human Genetics and Genomics Advances, 2022, 3, 100099.	1.0	3
68	The Genetic Epidemiology of Age-Related Maculopathy. International Journal of Human Genetics, 2001, 1, 11-24.	0.1	2
69	Fuchs' endothelial corneal dystrophy: fostering change in clinical care using observational data. Expert Review of Ophthalmology, 2012, 7, 389-391.	0.3	О