
Frederick Keith Barker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
2	Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11040-11045.	3.3	637
3	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	1.0	504
4	The Utility of the Incongruence Length Difference Test. Systematic Biology, 2002, 51, 625-637.	2.7	390
5	A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 295-308.	1.2	341
6	Earth history and the passerine superradiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7916-7925.	3.3	238
7	The Pattern and Timing of Diversification of Philippine Endemic Rodents: Evidence from Mitochondrial and Nuclear Gene Sequences. Systematic Biology, 2006, 55, 73-88.	2.7	192
8	A well-tested set of primers to amplify regions spread across the avian genome. Molecular Phylogenetics and Evolution, 2009, 50, 654-660.	1.2	170
9	Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Molecular Phylogenetics and Evolution, 2014, 75, 41-77.	1.2	149
10	Going to Extremes: Contrasting Rates of Diversification in a Recent Radiation of New World Passerine Birds. Systematic Biology, 2013, 62, 298-320.	2.7	130
11	A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 2010, 57, 753-770.	1.2	124
12	New insights into New World biogeography: An integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk, 2015, 132, 333-348.	0.7	118
13	THE EARLY DIVERSIFICATION HISTORY OF DIDELPHID MARSUPIALS: A WINDOW INTO SOUTH AMERICA'S "SPLENDID ISOLATION― Evolution; International Journal of Organic Evolution, 2014, 68, 684-695.	1.1	102
14	African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary â€~enigmas'. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 849-858.	1.2	95
15	A Phylogenomic Supertree of Birds. Diversity, 2019, 11, 109.	0.7	93
16	Fifty-Second Supplement to the American Ornithologists' Unioncheck-list of North American Birds. Auk, 2011, 128, 600-613.	0.7	85
17	Temperate origins of long-distance seasonal migration in New World songbirds. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12115-12120.	3.3	85
18	Fifty-First Supplement to the American Ornithologists' Union <i>Check-List of North American Birds</i> . Auk, 2010, 127, 726-744.	0.7	82

FREDERICK KEITH BARKER

#	Article	IF	CITATIONS
19	A comparative study of song form and duetting in neotropical Thryothorus wrens. Behaviour, 2009, 146, 1-43.	0.4	67
20	Monophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 2004, 31, 486-504.	1.2	64
21	Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity. Molecular Phylogenetics and Evolution, 2013, 69, 1043-1056.	1.2	60
22	Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: An avian case study. Molecular Phylogenetics and Evolution, 2013, 66, 69-79.	1.2	55
23	A comprehensive multilocus assessment of sparrow (Aves: Passerellidae) relationships. Molecular Phylogenetics and Evolution, 2014, 77, 177-182.	1.2	55
24	Molecular data delineate four genera of "Thryothorus―wrens. Molecular Phylogenetics and Evolution, 2006, 40, 750-759.	1.2	52
25	The Impact of Parsimony Weighting Schemes on Inferred Relationships among Toucans and Neotropical Barbets (Aves: Piciformes). Molecular Phylogenetics and Evolution, 2000, 15, 215-234.	1.2	44
26	A new endemic family of New Zealand passerine birds: adding heat to a biodiversity hotspot. Australian Journal of Zoology, 2007, 55, 73.	0.6	44
27	Avifaunal interchange across the Panamanian isthmus: insights from Campylorhynchus wrens. Biological Journal of the Linnean Society, 2007, 90, 687-702.	0.7	40
28	A comprehensive species-level molecular phylogeny of the New World blackbirds (Icteridae). Molecular Phylogenetics and Evolution, 2014, 71, 94-112.	1.2	39
29	Fifty-Fourth Supplement to the American Ornithologists' Union <i>Check-list of North American Birds</i> . Auk, 2013, 130, 558-571.	0.7	33
30	Metrics matter: the effect of parasite richness, intensity and prevalence on the evolution of host migration. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182147.	1.2	33
31	Evolution within the nuthatches (Sittidae: Aves, Passeriformes): molecular phylogeny, biogeography, and ecological perspectives. Journal of Ornithology, 2014, 155, 755-765.	0.5	31
32	ASSESSMENT OF SPECIES LIMITS AMONG YELLOW-BREASTED MEADOWLARKS (<i>STURNELLA</i> SPP.) USING MITOCHONDRIAL AND SEX-LINKED MARKERS. Auk, 2008, 125, 869-879.	0.7	30
33	Mitogenomic data resolve basal relationships among passeriform and passeridan birds. Molecular Phylogenetics and Evolution, 2014, 79, 313-324.	1.2	30
34	Fifty-third Supplement to the American Ornithologists' UnionCheck-list of North American Birds. Auk, 2012, 129, 573-588.	0.7	29
35	Phylogenetic methods in natural product research. Natural Product Reports, 2009, 26, 1585.	5.2	25
36	A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Molecular Phylogenetics and Evolution, 2010, 55, 733-737.	1.2	25

FREDERICK KEITH BARKER

#	Article	IF	CITATIONS
37	Clarifying the systematics of an enigmatic avian lineage: What is a bombycillid?. Molecular Phylogenetics and Evolution, 2008, 49, 1036-1040.	1.2	24
38	Fiftieth Supplement to the American Ornithologists' Union <i>Check-list of North American Birds</i> . Auk, 2009, 126, 705-714.	0.7	21
39	Contrasting Evolutionary Dynamics and Information Content of the Avian Mitochondrial Control Region and ND2 Gene. PLoS ONE, 2012, 7, e46403.	1.1	21
40	The origin of finches on Tristan da Cunha and Gough Island, central South Atlantic ocean. Molecular Phylogenetics and Evolution, 2013, 69, 299-305.	1.2	16
41	Fourfold polyphyly of the genus formerly known as Upucerthia, with notes on the systematics and evolution of the avian subfamily Furnariinae. Molecular Phylogenetics and Evolution, 2007, 44, 1320-1332.	1.2	15
42	A New Species of Bush-warbler from Bougainville Island and a Monophyletic Origin for Southwest Pacific Cettia. American Museum Novitates, 2006, 3511, 1.	0.2	14
43	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2011–31 July 2011. Molecular Ecology Resources, 2011, 11, 1124-1126.	2.2	14
44	Mitochondrial genomes and thousands of ultraconserved elements resolve the taxonomy and historical biogeography of the Euphonia and Chlorophonia finches (Passeriformes: Fringillidae). Auk, 2020, 137, .	0.7	14
45	A revised classification of the Icteridae (Aves) based on DNA sequence data. Zootaxa, 2016, 4093, 285-92.	0.2	13
46	Molecular Phylogenetics of the Wrens and Allies (Passeriformes: Certhioidea), with Comments on the Relationships of <i>Ferminia</i> . American Museum Novitates, 2017, 3887, 1-28.	0.2	13
47	Blood from a turnip: tissue origin of low-coverage shotgun sequencing libraries affects recovery of mitogenome sequences. Mitochondrial DNA, 2015, 26, 384-388.	0.6	9
48	A COMPLETE SPECIES-LEVEL PHYLOGENY OF THE GRACKLES (<i>QUISCALUS</i> SPP.), INCLUDING THE EXTINCT SLENDER-BILLED GRACKLE, INFERRED FROM MITOCHONDRIAL DNA. Condor, 2008, 110, 718-728.	0.7	8
49	SPECIES STATUS OF THE RED-SHOULDERED BLACKBIRD (<i>AGELAIUS ASSIMILIS</i>): IMPLICATIONS FOR ECOLOGICAL, MORPHOLOGICAL, AND BEHAVIORAL EVOLUTION IN <i>AGELAIUS</i>). Auk, 2008, 125, 87-94.	0.7	8
50	Isolation of 13 polymorphic microsatellite loci for slimy sculpin (Cottus cognatus). Conservation Genetics Resources, 2009, 1, 429-432.	0.4	7
51	Autosomal, sex-linked and mitochondrial loci resolve evolutionary relationships among wrens in the genus Campylorhynchus. Molecular Phylogenetics and Evolution, 2021, 163, 107242.	1.2	5
52	Morphometric Variation and Phylogeographic Structure in Macrotarsomys bastardi (Rodentia:) Tj ETQq0 0 0 rgB	[/Qverlocl	۹ 10 Tf 50 14
53	Range dynamics, rather than convergent selection, explain the mosaic distribution ofÂredâ€winged blackbird phenotypes. Ecology and Evolution, 2013, 3, 4910-4924.	0.8	4

⁵⁴ Big groups attract bad eggs: brood parasitism correlates with but does not cause cooperative breeding. Animal Behaviour, 2017, 133, 47-56.

0.8 3

#	Article	IF	CITATIONS
55	Sampling Confidence Envelopes of Phylogenetic Trees for Combinability Testing: A Reply to Rodrigo. Systematic Biology, 1999, 48, 596-603.	2.7	2
56	The Yellow-green Bush-tanager is neither a bush-tanager nor a sparrow: Molecular phylogenetics reveals that Chlorospingus flavovirens is a tanager (Aves: Passeriformes; Thraupidae). Zootaxa, 2016, 4136, 373-81.	0.2	2
57	Fifty-First Supplement to the American Ornithologists' UnionCheck-List of North American Birds. Auk, 2010, 127, 966-966.	0.7	0
	Mitochondrial genomes and thousands of ultraconserved elements resolve the taxonomy and		

historical biogeography of the <i>Euphonia</i> and <i>Chlorophonia</i> finches (Passeriformes:) Tj ETQq0 0 0 rgBD/Øverloc10 Tf 50 6

59 A shift in taste. Science, 2021, 373, 154-155. 6.0 0
