Xiao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191256/publications.pdf

Version: 2024-02-01

		840776	940533
18	1,233	11	16
papers	citations	h-index	g-index
18	18	18	693
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Healable, Recyclable, and Mechanically Tough Polyurethane Elastomers with Exceptional Damage Tolerance. Advanced Materials, 2020, 32, e2005759.	21.0	262
2	Healable and Recyclable Elastomers with Recordâ€High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. Advanced Materials, 2021, 33, e2101498.	21.0	227
3	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 3390-3396.	13.8	213
4	Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Materials Horizons, 2021, 8, 2475-2484.	12.2	142
5	Bioinspired Phototropic MXeneâ€Reinforced Soft Tubular Actuators for Omnidirectional Lightâ€Tracking and Adaptive Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	127
6	Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41102-41111.	8.0	67
7	Skin-Inspired Healable Conductive Elastomers with Exceptional Strain-Adaptive Stiffening and Damage Tolerance. Macromolecules, 2021, 54, 10767-10775.	4.8	42
8	Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 11834-11841.	8.0	41
9	Discovery and Insights into Organized Spontaneous Emulsification via Interfacial Self-Assembly of Amphiphilic Bottlebrush Block Copolymers. Macromolecules, 2021, 54, 3668-3677.	4.8	36
10	One-Pot Synthesis of Supertough, Sustainable Polyester Thermoplastic Elastomers Using Block-Like, Gradient Copolymer as Soft Midblock. CCS Chemistry, 2022, 4, 1263-1272.	7.8	21
11	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie, 2021, 133, 3432-3438.	2.0	20
12	Molecular weight dependency of β phase formation in injectionâ€molded isotactic polypropylene. Journal of Applied Polymer Science, 2020, 137, 48555.	2.6	12
13	Gaussian and Non-Gaussian Distributions of Fracture Properties in Tensile Stretching of High-Density Polyethylene. Macromolecules, 2021, 54, 8860-8874.	4.8	10
14	Mechanism of Significant Improvement of Large Strain Elasticity in Soft Propylene–Ethylene Random Copolymer via Blending with Hard Propylene–Ethylene Coplymer. Industrial & Engineering Chemistry Research, 2018, 57, 4967-4977.	3.7	6
15	Structural evolution in propylene-based elastomer with \hat{l}^3 form during stress relaxation. Polymer, 2021, 219, 123567.	3.8	4
16	Predicting the location of weld line in microinjectionâ€molded polyethylene via molecular orientation distribution. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1705-1715.	2.1	3
17	Frontispiece: Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
18	Frontispiz: Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie, 2021, 133, .	2.0	0