Jgvan Magnus Haugaard Olsen

List of Publications by Citations

Source:

https://exaly.com/author-pdf/1191158/jogvan-magnus-haugaard-olsen-publications-by-citations.pdf **Version:** 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 2,729 24 51 g-index

81 3,175 5 2.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
62	The Dalton quantum chemistry program system. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2014 , 4, 269-284	7.9	956
61	Excited States in Solution through Polarizable Embedding. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 3721-3734	6.4	253
60	Molecular Properties through Polarizable Embedding. <i>Advances in Quantum Chemistry</i> , 2011 , 61, 107-1	431.4	121
59	The DIRAC code for relativistic molecular calculations. <i>Journal of Chemical Physics</i> , 2020 , 152, 204104	3.9	73
58	Solvation Effects on Electronic Transitions: Exploring the Performance of Advanced Solvent Potentials in Polarizable Embedding Calculations. <i>Journal of Chemical Theory and Computation</i> , 2011 , 7, 2209-17	6.4	70
57	A combined quantum mechanics/molecular mechanics study of the one- and two-photon absorption in the green fluorescent protein. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5440-51	3.6	66
56	PERI-CC2: A Polarizable Embedded RI-CC2 Method. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 3274-83	6.4	66
55	Polarizable density embedding: a new QM/QM/MM-based computational strategy. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 5344-55	2.8	63
54	Solvatochromic Shifts in Uracil: A Combined MD-QM/MM Study. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 249-56	6.4	58
53	Excited states in large molecular systems through polarizable embedding. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20234-50	3.6	57
52	Molecular-Level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3513-21	6.4	48
51	Quantifying electron transfer reactions in biological systems: what interactions play the major role?. <i>Scientific Reports</i> , 2015 , 5, 18446	4.9	47
50	Performance of popular XC-functionals for the description of excitation energies in GFP-like chromophore models. <i>International Journal of Quantum Chemistry</i> , 2012 , 112, 789-800	2.1	45
49	Damped Response Theory in Combination with Polarizable Environments: The Polarizable Embedding Complex Polarization Propagator Method. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 1164-71	6.4	40
48	Analysis of computational models for an accurate study of electronic excitations in GFP. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 2582-8	3.6	39
47	Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 1832-42	6.4	38
46	A polarizable embedding DFT study of one-photon absorption in fluorescent proteins. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4735-43	3.6	38

(2014-2017)

Polarizable Density Embedding: A Solution to the Electron Spill-Out Problem in Multiscale Modeling. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5949-5958	6.4	35	
Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 1684-95	6.4	32	
Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 981-8	6.4	30	
Convergence of environment polarization effects in multiscale modeling of excitation energies. <i>Computational and Theoretical Chemistry</i> , 2014 , 1040-1041, 304-311	2	29	
Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 70-7	6.4	26	
Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7567-76	3.6	25	
Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. <i>Journal of Chemical Physics</i> , 2015 , 142, 114113	3.9	25	
Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. <i>Journal of Chemical Physics</i> , 2020 , 152, 214115	3.9	24	
Computational protocols for prediction of solute NMR relative chemical shifts. a case study of L-tryptophan in aqueous solution. <i>Journal of Computational Chemistry</i> , 2011 , 32, 2853-64	3.5	23	
The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 6230-6236	6.4	22	
Response properties of embedded molecules through the polarizable embedding model. <i>International Journal of Quantum Chemistry</i> , 2019 , 119, e25717	2.1	22	
Extreme Scalability of DFT-Based QM/MM MD Simulations Using MiMiC. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 5601-5613	6.4	20	
Computational Approach for Studying Optical Properties of DNA Systems in Solution. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 5050-5057	6.4	20	
Importance of Accurate Structures for Quantum Chemistry Embedding Methods: Which Strategy Is Better?. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 4309-4319	6.4	19	
Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 28339-28352	3.6	19	
MiMiC: A Novel Framework for Multiscale Modeling in Computational Chemistry. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 3810-3823	6.4	18	
Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 4870-4883	6.4	18	
Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. <i>Integrative Biology (United Kingdom)</i> , 2014 , 6, 1010-22	3.7	17	
	Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. <i>Journal of Chemical Theory and Computation</i> , 2016, 12, 1684-95 Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential. <i>Journal of Chemical Theory and Computation</i> , 2014, 10, 981-8 Convergence of environment polarization effects in multiscale modeling of excitation energies. <i>Computational and Theoretical Chemistry</i> , 2014, 1040-1041, 304-311 Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe. <i>Journal of Physical Chemistry Letters</i> , 2013, 4, 70-7 Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. <i>Physical Chemistry Chemical Physics</i> , 2015, 157-76 Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. <i>Journal of Chemical Physics</i> , 2015, 142, 114113 Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. <i>Journal of Chemical Physics</i> , 2020, 152, 214115 Computational protocols for prediction of solute NMR relative chemical shifts. a case study of L-tryptophan in aqueous solution. <i>Journal of Camputational Chemistry</i> , 2011, 32, 2853-64 The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. <i>Journal of Chemical Theory and Computation</i> , 2017, 13, 6230-6236 Response properties of embedded molecules through the polarizable embedding model. <i>International Journal of Quantum Chemistry</i> , 2019, 119, e25717 Extreme Scalability of DFT-Based QM/MM MD Simulations Using MiMic. <i>Journal of Chemical Theory and Computation</i> , 2019, 15, 5601-5613 Computationa, 2017, 15, 620-6236 Response properties of embedded molecules through the polarizable embedding Methods: Which Strategy Is Better?. <i>Journal of Chemical Theory and Computation</i> , 2018, 14,	Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. Journal of Chemical Theory and Computation, 2016, 12, 1684-95 Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Potentiable Embedding: Role of the Embedding Potential. Journal of Chemical Theory and Computation, 2014, 10, 981-8 Convergence of environment polarization effects in multiscale modeling of excitation energies. Computational and Theoretical Chemistry, 2014, 1040-1041, 304-311 Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe. Journal of Physical Chemistry Letters, 2013, 4, 70-7 Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. Physical Chemistry Chemical Physics, 2013, 15, 7567-76 Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. Journal of Chemical Physics, 2015, 142, 114113 Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. Journal of Chemical Physics, 2020, 152, 214115 Computational protocols for prediction of solute NMR relative chemical shifts. a case study of L-tryptophan in aqueous solution. Journal of Computational Chemistry, 2011, 32, 2853-64 The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2017, 13, 6230-6236 Response properties of embedded molecules through the polarizable embedding model. International Journal of Quantum Chemistry, 2019, 119, e25717 Extreme Scalability of DFT-Based QM/MM MD Simulations Using MilMiC. Journal of Chemical Theory and Computation, 2019, 15, 5601-5613 Computational Approach for Studying Optical Properties of DNA Systems in Solution. Journal of Chemical Theory and Computation, 2019, 15, 3810-3823 Computational Chemistry Chemical Physics, 2016, 18, 28339-28352 MilM	Modeling. Journal of Physical Chemistry Letters, 2017, 8, 5949-5958 64 35 Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. Journal of Chemical Theory and Computation, 2016, 12, 1684-95 64 32 Nuclear Magnetic Shielding Constants from Quantum Mechanical Calculations Using Polarizable Embedding; Role of the Embedding Potential. Journal of Chemical Theory and Computation, 2014, 10, 981-8 64 30 Convergence of environment polarization effects in multiscale modeling of excitation energies. Computational and Theoretical Chemistry, 2014, 1040-1041, 304-311 2 29 Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe. Journal of Physical Chemistry Letters, 2013, 4, 70-7 64 26 Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. Physical Chemistry Letters, 2013, 15, 7567-76 36 25 Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. Journal of Chemical Physics, 2014, 124, 114113 39 25 Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. Journal of Chemical Physics, 2020, 152, 214115 39 24 Computational protocols for prediction of solute NMR relative chemical shifts, a case study of L-tryptophan in aqueous solution. Journal of Computational Chemistry, 2011, 13, 6230-6236 64 22

27	Photoabsorption of acridine yellow and proflavin bound to human serum albumin studied by means of quantum mechanics/molecular dynamics. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 2069-80	3.4	17
26	Embedding beyond electrostatics-The role of wave function confinement. <i>Journal of Chemical Physics</i> , 2016 , 145, 104102	3.9	17
25	Avoiding Electron Spill-Out in QM/MM Calculations on Excited States with Simple Pseudopotentials. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 1373-1381	6.4	16
24	Molecular quantum mechanical gradients within the polarizable embedding approachapplication to the internal vibrational Stark shift of acetophenone. <i>Journal of Chemical Physics</i> , 2015 , 142, 034119	3.9	15
23	Polarizable Density Embedding Coupled Cluster Method. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 1351-1360	6.4	15
22	Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 525-536	6.4	14
21	Accuracy of Molecular Simulation-Based Predictions of Values: A Metadynamics Study. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6373-6381	6.4	14
20	CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 6154-6163	6.4	13
19	Photodissociation of OCS: deviations between theory and experiment, and the importance of higher order correlation effects. <i>Journal of Chemical Physics</i> , 2014 , 141, 184310	3.9	13
18	Molecular Basis of CLC Antiporter Inhibition by Fluoride. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7254-7258	16.4	10
17	Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 15870-15875	3.6	9
16	Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 4442-4451	6.4	9
15	An averaged polarizable potential for multiscale modeling in phospholipid membranes. <i>Journal of Computational Chemistry</i> , 2017 , 38, 601-611	3.5	8
14	Frontiers in Multiscale Modeling of Photoreceptor Proteins. <i>Photochemistry and Photobiology</i> , 2021 , 97, 243-269	3.6	8
13	Relativistic Polarizable Embedding. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 2870-2880	6.4	7
12	Cost-Effective Potential for Accurate Polarizable Embedding Calculations in Protein Environments. Journal of Chemical Theory and Computation, 2020, 16, 1162-1174	6.4	7
11	Polarizable Density Embedding for Large Biomolecular Systems. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 5999-6006	6.4	6
10	Multipole moments for embedding potentials: Exploring different atomic allocation algorithms. Journal of Computational Chemistry, 2016, 37, 1887-96	3.5	4

LIST OF PUBLICATIONS

9	Solvatochromic shifts vs nanosolvation patterns: Uracil in water as a test case. <i>Computational and Theoretical Chemistry</i> , 2011 , 974, 109-116	2	4	
8	Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model. <i>Journal of Computational Chemistry</i> , 2017 , 38, 2108-2117	3.5	3	
7	MiMiC: Multiscale Modeling in Computational Chemistry. Frontiers in Molecular Biosciences, 2020, 7, 45	5.6	3	
6	A QM/MM and QM/QM/MM study of Kerr, Cotton-Mouton and Jones linear birefringences in liquid acetonitrile. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 3831-3840	3.6	3	
5	Parallelization of the polarizable embedding scheme for higher-order response functions. <i>Molecular Physics</i> , 2012 , 110, 2579-2586	1.7	2	
4	Efficient Open-Source Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the Trees. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3445-3454	6.4	2	
3	Harmonic Infrared and Raman Spectra in Molecular Environments Using the Polarizable Embedding Model. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3599-3617	6.4	2	
2	Two-Photon Absorption Cross-Sections in Fluorescent Proteins Containing Non-canonical Chromophores Using Polarizable QM/MM. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 111	5.6	1	
1	On the accuracy of molecular simulation-based predictions of koff values: a Metadynamics study		1	