Lie Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11910995/publications.pdf

Version: 2024-02-01

79	8,921	38	63
papers	citations	h-index	g-index
81	81	81	4946
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters. IEEE Transactions on Power Delivery, 2011, 26, 2009-2017.	2.9	1,202
2	Direct Active and Reactive Power Control of DFIG for Wind Energy Generation. IEEE Transactions on Energy Conversion, 2006, 21, 750-758.	3.7	604
3	Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions. IEEE Transactions on Power Systems, 2007, 22, 314-323.	4.6	517
4	Control and Operation of a DC Microgrid With Variable Generation and Energy Storage. IEEE Transactions on Power Delivery, 2011, 26, 2513-2522.	2.9	510
5	Design and Operation of a Hybrid Modular Multilevel Converter. IEEE Transactions on Power Electronics, 2015, 30, 1137-1146.	5.4	368
6	Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance. IEEE Transactions on Energy Conversion, 2007, 22, 110-118.	3.7	350
7	Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission. IEEE Transactions on Power Systems, 2007, 22, 976-984.	4.6	344
8	Coordinated Control of DFIG's Rotor and Grid Side Converters During Network Unbalance. IEEE Transactions on Power Electronics, 2008, 23, 1041-1049.	5.4	306
9	Control of PMSG-Based Wind Turbines for System Inertial Response and Power Oscillation Damping. IEEE Transactions on Sustainable Energy, 2015, 6, 565-574.	5.9	284
10	DC Fault Detection and Location in Meshed Multiterminal HVDC Systems Based on DC Reactor Voltage Change Rate. IEEE Transactions on Power Delivery, 2017, 32, 1516-1526.	2.9	278
11	DC Voltage Variation Based Autonomous Control of DC Microgrids. IEEE Transactions on Power Delivery, 2013, 28, 637-648.	2.9	261
12	Autonomous DC Voltage Control of a DC Microgrid With Multiple Slack Terminals. IEEE Transactions on Power Systems, 2012, 27, 1897-1905.	4.6	251
13	HVDC transmission for large offshore wind farms. Power Engineering Journal, 2002, 16, 135-141.	0.2	214
14	Model-Based Predictive Direct Power Control of Doubly Fed Induction Generators. IEEE Transactions on Power Electronics, 2010, 25, 341-351.	5.4	201
15	Enhanced Control and Operation of DFIG-Based Wind Farms During Network Unbalance. IEEE Transactions on Energy Conversion, 2008, 23, 1073-1081.	3.7	191
16	VSC Transmission Operating Under Unbalanced AC Conditions—Analysis and Control Design. IEEE Transactions on Power Delivery, 2005, 20, 427-434.	2.9	188
17	Improved Direct Power Control of Grid-Connected DC/AC Converters. IEEE Transactions on Power Electronics, 2009, 24, 1280-1292.	5.4	177
18	Modeling and Control of a Multiport Power Electronic Transformer (PET) for Electric Traction Applications. IEEE Transactions on Power Electronics, 2016, 31, 915-927.	5.4	159

#	Article	IF	CITATIONS
19	Precharging and DC Fault Ride-Through of Hybrid MMC-Based HVDC Systems. IEEE Transactions on Power Delivery, 2015, 30, 1298-1306.	2.9	153
20	Acoustic noise radiated by PWM-controllel induction machine drives. IEEE Transactions on Industrial Electronics, 2000, 47, 880-889.	5.2	140
21	Grid connection of large offshore wind farms using HVDC. Wind Energy, 2006, 9, 371-382.	1.9	140
22	Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault. IEEE Transactions on Power Delivery, 2016, 31, 351-361.	2.9	138
23	Hybrid HVDC System for Power Transmission to Island Networks. IEEE Transactions on Power Delivery, 2004, 19, 1884-1890.	2.9	123
24	Multi-terminal DC transmission systems for connecting large offshore wind farms. , 2008, , .		104
25	A Hybrid Modular Multilevel Converter With Novel Three-Level Cells for DC Fault Blocking Capability. IEEE Transactions on Power Delivery, 2015, 30, 2017-2026.	2.9	99
26	Hybrid HVDC for Integrating Wind Farms With Special Consideration on Commutation Failure. IEEE Transactions on Power Delivery, 2016, 31, 789-797.	2.9	97
27	Predictive Current Control of Doubly Fed Induction Generators. IEEE Transactions on Industrial Electronics, 2009, 56, 4143-4153.	5.2	93
28	Slidingâ€mode control of a wind turbineâ€driven doubleâ€fed induction generator under nonâ€ideal grid voltages. IET Renewable Power Generation, 2013, 7, 370-379.	1.7	84
29	Coordinated Control of DFIG and FSIG-Based Wind Farms Under Unbalanced Grid Conditions. IEEE Transactions on Power Delivery, 2010, 25, 367-377.	2.9	82
30	Distributed PLL-Based Control of Offshore Wind Turbines Connected With Diode-Rectifier-Based HVDC Systems. IEEE Transactions on Power Delivery, 2018, 33, 1328-1336.	2.9	81
31	A Nearest Level PWM Method for the MMC in DC Distribution Grids. IEEE Transactions on Power Electronics, 2018, 33, 9209-9218.	5.4	80
32	Enhanced Independent Pole Control of Hybrid MMC-HVdc System. IEEE Transactions on Power Delivery, 2018, 33, 861-872.	2.9	73
33	VSC Transmission System Using Flying Capacitor Multilevel Converters and Hybrid PWM Control. IEEE Transactions on Power Delivery, 2007, 22, 693-702.	2.9	72
34	Adjustable Inertial Response From the Converter With Adaptive Droop Control in DC Grids. IEEE Transactions on Smart Grid, 2019, 10, 3198-3209.	6.2	54
35	Coordinated Control of Parallel DR-HVDC and MMC-HVDC Systems for Offshore Wind Energy Transmission. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2572-2582.	3.7	52
36	Analysis and Control of Modular Multilevel Converters under Asymmetric Arm Impedance Conditions. IEEE Transactions on Industrial Electronics, 2016, 63, 71-81.	5. 2	47

#	Article	IF	CITATIONS
37	Offshore AC Fault Protection of Diode Rectifier Unit-Based HVdc System for Wind Energy Transmission. IEEE Transactions on Industrial Electronics, 2019, 66, 5289-5299.	5.2	45
38	Power oscillation damping using wind turbines with energy storage systems. IET Renewable Power Generation, 2013, 7, 449-457.	1.7	41
39	Analysis of voltage source converterâ€based highâ€voltage direct current under DC lineâ€toâ€earth fault. IET Power Electronics, 2015, 8, 428-438.	1.5	41
40	A Novel Method to Determine Droop Coefficients of DC Voltage Control for VSC-MTDC System. IEEE Transactions on Power Delivery, 2020, 35, 2196-2211.	2.9	41
41	Coordinated DC Voltage Control of Wind Turbine With Embedded Energy Storage System. IEEE Transactions on Energy Conversion, 2012, 27, 1036-1045.	3.7	39
42	Improved rotor current control of wind turbine driven doubly-fed induction generators during network voltage unbalance. Electric Power Systems Research, 2010, 80, 847-856.	2.1	38
43	Protection of large partitioned MTDC Networks Using DC-DC converters and circuit breakers. Protection and Control of Modern Power Systems, 2016, 1, .	4.3	38
44	Enhanced Flat-Topped Modulation for MMC Control in HVDC Transmission Systems. IEEE Transactions on Power Delivery, 2017, 32, 152-161.	2.9	38
45	Control of an LCC HVDC system for connecting large offshore wind farms with special consideration of grid fault. , 2008, , .		37
46	An improved modular multilevel converter with DC fault blocking capability. , 2014, , .		36
47	Key technologies of VSC-HVDC and its application on offshore wind farm in China. Renewable and Sustainable Energy Reviews, 2014, 36, 247-255.	8.2	35
48	Control of Offshore MMC During Asymmetric Offshore AC Faults for Wind Power Transmission. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1074-1083.	3.7	34
49	Enhanced AC voltage and frequency control of offshore MMC station for wind farm connection. IET Renewable Power Generation, 2018, 12, 1771-1777.	1.7	24
50	DC/DC Converters Based on Hybrid MMC for HVDC Grid Interconnection. , 2015, , .		23
51	Dynamic modeling and direct power control of wind turbine driven DFIG under unbalanced network voltage conditions. Journal of Zhejiang University: Science A, 2008, 9, 1731-1740.	1.3	20
52	Decoupled TAB converter with energy storage system for HVDC power system of more electric aircraft. Journal of Engineering, 2018, 2018, 593-602.	0.6	20
53	A Unidirectional Hybrid HVDC Transmission System Based on Diode Rectifier and Full-Bridge MMC. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6974-6984.	3.7	20
54	Accelerated switching function model of hybrid MMCs for HVDC system simulation. IET Power Electronics, 2017, 10, 2199-2207.	1.5	20

#	Article	IF	Citations
55	DC fault protection strategy considering DC network partition. , 2016, , .		18
56	DC network stability and dynamic analysis using virtual impedance method. , 2012, , .		16
57	Frequency support using multiâ€ŧerminal HVDC systems based on DC voltage manipulation. IET Renewable Power Generation, 2016, 10, 1393-1401.	1.7	16
58	Flexible Virtual Synchronous Generator Control for Distributed Generator with Adaptive Inertia. Electric Power Components and Systems, 2019, 47, 128-140.	1.0	16
59	A novel method for obtaining virtual inertial response of DFIGâ€based wind turbines. Wind Energy, 2016, 19, 313-328.	1.9	15
60	Review of DC fault protection for HVDC grids. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e278.	1.9	15
61	Hybrid modular multilevel converter based multiâ€terminal DC/DC converter with minimised fullâ€bridge submodules ratio considering DC fault isolation. IET Renewable Power Generation, 2016, 10, 1587-1596.	1.7	14
62	Detailed quantitative comparison of halfâ€bridge modular multilevel converter modelling methods. Journal of Engineering, 2019, 2019, 1292-1298.	0.6	13
63	Enhanced Control of Offshore Wind Farms Connected to MTDC Network Using Partially Selective DC Fault Protection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2926-2935.	3.7	13
64	Contribution of VSC-HVDC connected wind farms to grid frequency regulation and power damping. , 2010, , .		12
65	Wind turbines with energy storage for power smoothing and FRT enhancement., 2011,,.		11
66	MMC Impedance Modeling and Interaction of Converters in Close Proximity. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 7223-7236.	3.7	9
67	AC and DC Microgrid with Distributed Energy Resources. , 2017, , 39-64.		8
68	Control of DFIG-based wind farms for network unbalance compensation. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	7
69	The Role of Multiterminal HVDC for Wind Power Transmission and AC Network Support., 2010,,.		7
70	Hybrid AC/DC hub for integrating onshore wind power and interconnecting onshore and offshore DC networks. IET Renewable Power Generation, 2020, 14, 1738-1745.	1.7	6
71	Impact of DC protection strategy of large HVDC network on frequency response of the connected AC system. Journal of Engineering, 2019, 2019, 4031-4035.	0.6	4
72	Improved rotor current control of wind turbine driven doubly fed induction generators during network unbalance. , 2009, , .		3

#	Article	IF	Citations
73	Improved operation of DFIG and FSIG-based wind farms during network unbalance. , 2008, , .		2
74	DC microgrid dynamic performance assessment and enhancement based on virtual impedance method. , 2014, , .		2
75	A Novel Grid Connection Method for DFIG Based on Direct Power Control. , 2016, , .		2
76	Microgrid design using folded P-f droop and new grid interface unit to minimize the need for communication. International Journal of Electrical Power and Energy Systems, 2021, 130, 106949.	3.3	2
77	Direct power control of doubly-fed-induction-generator-based wind turbines under asymmetrical grid voltage dips. , 2012, , .		1
78	Active Distribution Power System with Multi-terminal MVDC Links. , 2015, , .		1
79	Fault Ride-Through of HVDC Connected Large Offshore Wind Farms. Green Energy and Technology, 2012, , 415-430.	0.4	0