Parlapalli V Satyam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11908680/publications.pdf

Version: 2024-02-01

11	336	8	11
papers	citations	h-index	g-index
11	11	11	676
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications. Scientific Reports, 2017, 7, 8378.	3.3	143
2	Defect-Engineered MoO ₂ Nanostructures as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5208-5218.	5.1	54
3	Simple Growth of Faceted Au–ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and) Tj ETQq1 1 C Visible Light. ACS Applied Materials & Distriction Substrates (Nanowires and Structures on Silicon Substrates on Silicon Substrates (Nanowires and Structures on Structures on Silicon Substrates (Nanowires and Structures on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Structures on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Structures on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Structures on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Silicon Substrates on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Silicon Substrates on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Silicon Substrates on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires and Silicon Substrates on Silicon Substrates on Silicon Substrates on Silicon Substrates (Nanowires on Silicon Substrates on Silicon Substrates on Silicon Substrates on Si	0.784314 8.0	rgBT /Overlock 38
4	Optical band gap, local work function and field emission properties of MBE grown \hat{l}^2 -MoO3 nanoribbons. Applied Surface Science, 2019, 476, 691-700.	6.1	28
5	Growth of Au capped GeO2 nanowires for visible-light photodetection. Applied Physics Letters, 2016, 109, .	3.3	23
6	P-type $\langle i \rangle \hat{l}^2 \langle i \rangle$ -MoO \langle sub \rangle 2 $\langle s$ ub \rangle nanostructures on n-Si by hydrogenation process: synthesis and application towards self-biased UV-visible photodetection. Nanotechnology, 2019, 30, 035204.	2.6	18
7	Ag nanoparticle decorated molybdenum oxide structures: growth, characterization, DFT studies and their application to enhanced field emission. Nanotechnology, 2017, 28, 415602.	2.6	14
8	Microscopy and spectroscopy study of nanostructural phase transformation from β-MoO3 to Mo under UHV – MBE conditions. Surface Science, 2019, 682, 64-74.	1.9	9
9	Growth of Molybdenum Trioxide Nanoribbons on Oriented Ag and Au Nanostructures: A Scanning Electron Microscopy (SEM) Study. Microscopy and Microanalysis, 2019, 25, 1449-1456.	0.4	5
10	<i>In situ</i> synchrotron X-ray diffraction study of coherently embedded silver nanostructure growth in silicon. CrystEngComm, 2017, 19, 6811-6820.	2.6	3
11	Tuning the structural, optical, local work function and field emission properties of molybdenum oxide thin films with oxygen partial pressures. Journal of Applied Physics, 2020, 127, 025301.	2.5	1