## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11905967/publications.pdf

Version: 2024-02-01

|          |                | 36203        | 60497          |
|----------|----------------|--------------|----------------|
| 81       | 11,874         | 51           | 81             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 82       | 82             | 82           | 8659           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Triticeae genome sequences reveal huge expansions of gene families implicated in fertility restoration.<br>Current Opinion in Plant Biology, 2022, 66, 102166.                                                                                                               | 3.5 | 8         |
| 2  | Cofactor-independent RNA editing by a synthetic S-type PPR protein. Synthetic Biology, 2022, 7, ysab034.                                                                                                                                                                     | 1.2 | 12        |
| 3  | The <scp>GENOMES UNCOUPLED1</scp> protein has an ancient, highly conserved role but not in retrograde signalling. New Phytologist, 2022, 236, 99-113.                                                                                                                        | 3.5 | 11        |
| 4  | The Pentatricopeptide Repeat Protein MEF100 Is Required for the Editing of Four Mitochondrial Editing Sites in Arabidopsis. Cells, 2021, 10, 468.                                                                                                                            | 1.8 | 4         |
| 5  | A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Communications Biology, 2021, 4, 545.                                                                                                                                                     | 2.0 | 28        |
| 6  | Towards a plant model for enigmatic Uâ€ŧoâ€C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the hornwort <i>Anthoceros agrestis</i> New Phytologist, 2020, 225, 1974-1992.                                                | 3.5 | 57        |
| 7  | The coordinated action of <scp>PPR</scp> 4 and <scp>EMB</scp> 2654 on each intron half mediates <i>trans</i> â€splicing of <i>rps12</i> transcripts in plant chloroplasts. Plant Journal, 2019, 100, 1193-1207.                                                              | 2.8 | 42        |
| 8  | Evolutionary Model of Plastidial RNA Editing in Angiosperms Presumed from Genome-Wide Analysis of Amborella trichopoda. Plant and Cell Physiology, 2019, 60, 2141-2151.                                                                                                      | 1.5 | 17        |
| 9  | The E domain of CRR2 participates in sequenceâ€specific recognition of RNA in plastids. New Phytologist, 2019, 222, 218-229.                                                                                                                                                 | 3.5 | 36        |
| 10 | High intraspecific diversity of <i>Restorerâ€ofâ€fertilityâ€like</i> genes in barley. Plant Journal, 2019, 97, 281-295.                                                                                                                                                      | 2.8 | 24        |
| 11 | Editing of Chloroplast rps14 by PPR Editing Factor EMB2261 Is Essential for Arabidopsis Development. Frontiers in Plant Science, 2018, 9, 841.                                                                                                                               | 1.7 | 18        |
| 12 | In Arabidopsis thaliana distinct alleles encoding mitochondrial RNA PROCESSING FACTOR 4 support the generation of additional 5′ termini of ccmB transcripts. Plant Molecular Biology, 2017, 93, 659-668.                                                                     | 2.0 | 13        |
| 13 | The mitochondrial pentatricopeptide repeat protein <scp>PPR</scp> 19 is involved in the stabilization of <i>NADH dehydrogenase 1</i> transcripts and is crucial for mitochondrial function and <i>Arabidopsis thaliana</i> development. New Phytologist, 2017, 215, 202-216. | 3.5 | 60        |
| 14 | The Pentatricopeptide Repeat Protein EMB2654 Is Essential for Trans-Splicing of a Chloroplast Small Ribosomal Subunit Transcript. Plant Physiology, 2017, 173, 1164-1176.                                                                                                    | 2.3 | 52        |
| 15 | Protein Complexes Implicated in RNA Editing in Plant Organelles. Molecular Plant, 2017, 10, 1255-1257.                                                                                                                                                                       | 3.9 | 14        |
| 16 | Redefining the structural motifs that determine <scp>RNA</scp> binding and <scp>RNA</scp> editing by pentatricopeptide repeat proteins in land plants. Plant Journal, 2016, 85, 532-547.                                                                                     | 2.8 | 267       |
| 17 | Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. Plant Cell, 2016, 28, 2276-2290.                                                                                                                                                                        | 3.1 | 57        |
| 18 | Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Scientific Reports, 2016, 6, 35152.                                                                                                                                                                  | 1.6 | 46        |

| #  | Article                                                                                                                                                                                                                                                                         | IF                     | CITATIONS              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| 19 | In-silicoidentification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenneL.). Genome Biology and Evolution, 2016, 9, evw047.                                                                                          | 1.1                    | 22                     |
| 20 | <scp>AEF</scp> 1/ <scp>MPR</scp> 25 is implicated in <scp>RNA</scp> editing of plastid <i>atpF</i> and mitochondrial <i>nad5</i> , and also promotes <i>atpF</i> splicing in Arabidopsis and rice. Plant Journal, 2015, 81, 661-669.                                            | 2.8                    | 75                     |
| 21 | Predictable Alteration of Sequence Recognition by RNA Editing Factors from Arabidopsis. Plant Cell, 2015, 27, 403-416.                                                                                                                                                          | 3.1                    | 75                     |
| 22 | Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family. Frontiers in Plant Science, 2014, 5, 396.                                                                                                                                          | 1.7                    | 16                     |
| 23 | The Pentatricopeptide Repeat Proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 Are Involved in the Splicing of the Multipartite <i>nad5</i> Transcript Encoding a Subunit of Mitochondrial Complex I. Plant Physiology, 2014, 165, 1409-1416.                               | 2.3                    | 78                     |
| 24 | The potential for manipulating <scp>RNA</scp> with pentatricopeptide repeat proteins. Plant Journal, 2014, 78, 772-782.                                                                                                                                                         | 2.8                    | 64                     |
| 25 | n <scp>MAT</scp> 4, a maturase factor required for <i>nad1</i> preâ€m <scp>RNA</scp> processing and maturation, is essential for holocomplexÂ <scp>I</scp> biogenesis in <scp>A</scp> rabidopsis mitochondria. Plant Journal, 2014, 78, 253-268.                                | 2.8                    | 110                    |
| 26 | The cytidine deaminase signature<br><scp>H</scp> x <scp>E</scp> (s) <sub>n</sub> <scp>C</scp> xx <scp>C</scp> of <scp>DYW</scp> 1 binds<br>zinc and is necessary for <scp>RNA</scp> editing of <i>ndh<scp>D</scp>â€1</i> . New Phytologist, 2014,<br>203, 1090-1095.            | 3.5                    | 100                    |
| 27 | <i>Small kernelÂ1</i> encodes a pentatricopeptide repeat protein required for mitochondrial <i>nad7</i> transcript editing and seed development in maize <i>(Zea mays)</i> and rice <i>(Oryza) Tj ETQq1 1</i>                                                                   | 1 0 <b>.₹&amp;</b> 431 | 4 rg <b>B7</b> /Overlo |
| 28 | Quantitative analysis of motifs contributing to the interaction between <scp>PLS</scp> â€subfamily members and their target <scp>RNA</scp> sequences in plastid <scp>RNA</scp> editing. Plant Journal, 2014, 80, 870-882.                                                       | 2.8                    | 51                     |
| 29 | Surrogate mutants for studying mitochondrially encoded functions. Biochimie, 2014, 100, 234-242.                                                                                                                                                                                | 1.3                    | 61                     |
| 30 | Pentatricopeptide Repeat Proteins in Plants. Annual Review of Plant Biology, 2014, 65, 415-442.                                                                                                                                                                                 | 8.6                    | 842                    |
| 31 | Mitochondrial genomes as living †fossils'. BMC Biology, 2013, 11, 30.                                                                                                                                                                                                           | 1.7                    | 11                     |
| 32 | The <scp>E</scp> domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for <scp>RNA</scp> editing. Plant Journal, 2013, 74, 935-945.                                                                                           | 2.8                    | 58                     |
| 33 | A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2013, 1833, 253-259.                                                                                                                 | 1.9                    | 141                    |
| 34 | A <scp>DYW</scp> â€protein knockout in <i><scp>P</scp>hyscomitrella</i> affects two closely spaced mitochondrial editing sites and causes a severe developmental phenotype. Plant Journal, 2013, 76, 420-432.                                                                   | 2.8                    | 45                     |
| 35 | m <scp>CSF</scp> 1, a nucleusâ€encoded <scp>CRM</scp> protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes <scp>I</scp> and <scp>IV</scp> in <scp>A</scp> rabidopsis. New Phytologist, 2013, 199, 379-394. | 3.5                    | 98                     |
| 36 | PPR-SMRs. RNA Biology, 2013, 10, 1501-1510.                                                                                                                                                                                                                                     | 1.5                    | 57                     |

| #  | Article                                                                                                                                                                                                                       | IF  | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Combinatorial Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins. PLoS Genetics, 2012, 8, e1002910.                                                                                                   | 1.5 | 455       |
| 38 | SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Research, 2012, 41, D1185-D1191.                                                | 6.5 | 272       |
| 39 | Two Interacting Proteins Are Necessary for the Editing of the NdhD-1 Site in <i>Arabidopsis</i> Plastids Â. Plant Cell, 2012, 24, 3684-3694.                                                                                  | 3.1 | 130       |
| 40 | Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. Journal of Experimental Botany, 2012, 63, 1251-1270.                                                               | 2.4 | 49        |
| 41 | Nucleotide and RNA Metabolism Prime Translational Initiation in the Earliest Events of Mitochondrial Biogenesis during Arabidopsis Germination  Â. Plant Physiology, 2012, 158, 1610-1627.                                    | 2.3 | 124       |
| 42 | Mutations in an <i>Arabidopsis</i> Mitochondrial Transcription Termination Factor–Related Protein Enhance Thermotolerance in the Absence of the Major Molecular Chaperone HSP101. Plant Cell, 2012, 24, 3349-3365.            | 3.1 | 94        |
| 43 | A PORR domain protein required for <i>rpl2</i> and <i>ccmF</i> <sub><i>C</i></sub> intron splicing and for the biogenesis of <i>c</i> â€type cytochromes in Arabidopsis mitochondria. Plant Journal, 2012, 69, 996-1005.      | 2.8 | 99        |
| 44 | The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high lightâ€dependent plastid redox signalling to the nucleus. Plant Journal, 2012, 70, 279-291.                                        | 2.8 | 81        |
| 45 | The Pentatricopeptide Repeat Protein OTP87 Is Essential for RNA Editing of nad7 and atp1 Transcripts in Arabidopsis Mitochondria. Journal of Biological Chemistry, 2011, 286, 21361-21371.                                    | 1.6 | 76        |
| 46 | An <i>Arabidopsis</i> Dual-Localized Pentatricopeptide Repeat Protein Interacts with Nuclear Proteins Involved in Gene Expression Regulation. Plant Cell, 2011, 23, 730-740.                                                  | 3.1 | 96        |
| 47 | The evolution of RNA editing and pentatricopeptide repeat genes. New Phytologist, 2011, 191, 37-47.                                                                                                                           | 3.5 | 249       |
| 48 | OTP70 is a pentatricopeptide repeat protein of the Eâ€∫subgroup involved in splicing of the plastid transcript <i>rpoC1</i> . Plant Journal, 2011, 65, 532-542.                                                               | 2.8 | 106       |
| 49 | <b>Organellar RNA editing</b> . Wiley Interdisciplinary Reviews RNA, 2011, 2, 493-506.                                                                                                                                        | 3.2 | 55        |
| 50 | Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes. Molecular Biology and Evolution, 2011, 28, 2077-2086.                                               | 3.5 | 248       |
| 51 | A PPR protein involved in regulating nuclear genes encoding mitochondrial proteins?. Plant Signaling and Behavior, 2011, 6, 748-750.                                                                                          | 1.2 | 11        |
| 52 | In Silico Methods for Identifying Organellar and Suborganellar Targeting Peptides in Arabidopsis Chloroplast Proteins and for Predicting the Topology of Membrane Proteins. Methods in Molecular Biology, 2011, 774, 243-280. | 0.4 | 6         |
| 53 | The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts. Plant Journal, 2010, 61, 339-349.                                                                                | 2.8 | 92        |
| 54 | Identification of a Pentatricopeptide Repeat Protein Implicated in Splicing of Intron $1$ of Mitochondrial nad7 Transcripts. Journal of Biological Chemistry, 2010, 285, 32192-32199.                                         | 1.6 | 123       |

| #  | Article                                                                                                                                                                                                              | IF  | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Plant RNA editing. RNA Biology, 2010, 7, 213-219.                                                                                                                                                                    | 1.5 | 146       |
| 56 | <i>Arabidopsis</i> tRNA Adenosine Deaminase Arginine Edits the Wobble Nucleotide of Chloroplast tRNAArg(ACG) and Is Essential for Efficient Chloroplast Translation. Plant Cell, 2009, 21, 2058-2071.                | 3.1 | 69        |
| 57 | The Arabidopsis gene <i>YS1</i> encoding a DYW protein is required for editing of <i>rpoB</i> transcripts and the rapid development of chloroplasts during early growth. Plant Journal, 2009, 58, 82-96.             | 2.8 | 178       |
| 58 | Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in <i>Arabidopsis</i> Chloroplasts. Plant Cell, 2009, 21, 146-156.                            | 3.1 | 226       |
| 59 | A Study of New <i>Arabidopsis</i> Chloroplast RNA Editing Mutants Reveals General Features of Editing Factors and Their Target Sites Â. Plant Cell, 2009, 21, 3686-3699.                                             | 3.1 | 179       |
| 60 | Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Critical Reviews in Plant Sciences, 2009, 28, 393-409.                                                       | 2.7 | 76        |
| 61 | CLB19, a pentatricopeptide repeat protein required for editing of <i>rpoA</i> and <i>clpP</i> chloroplast transcripts. Plant Journal, 2008, 56, 590-602.                                                             | 2.8 | 236       |
| 62 | The pentatricopeptide repeat gene <i>OTP51</i> with two LAGLIDADG motifs is required for the <i>cis</i> êsplicing of plastid <i>ycf3</i> intronâ€f2 in <i>Arabidopsis thaliana</i> Plant Journal, 2008, 56, 157-168. | 2.8 | 148       |
| 63 | Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends in Plant Science, 2008, 13, 663-670.                                                                                           | 4.3 | 754       |
| 64 | On the Expansion of the Pentatricopeptide Repeat Gene Family in Plants. Molecular Biology and Evolution, 2008, 25, 1120-1128.                                                                                        | 3.5 | 329       |
| 65 | SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Research, 2007, 35, D213-D218.                                                                                                                             | 6.5 | 394       |
| 66 | A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Research, 2007, 35, e114.                                            | 6.5 | 167       |
| 67 | Genome-Wide Analysis of mRNA Decay Rates and Their Determinants in <i>Arabidopsis thaliana</i> Plant Cell, 2007, 19, 3418-3436.                                                                                      | 3.1 | 296       |
| 68 | Pentatricopeptide Repeat Proteins in <i>Trypanosoma brucei</i> Function in Mitochondrial Ribosomes.<br>Molecular and Cellular Biology, 2007, 27, 6876-6888.                                                          | 1.1 | 92        |
| 69 | A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Letters, 2007, 581, 4132-4138.                                                                                                    | 1.3 | 211       |
| 70 | RNAi for revealing and engineering plant gene functions. Current Opinion in Biotechnology, 2007, 18, 148-153.                                                                                                        | 3.3 | 128       |
| 71 | Plastid tRNA Genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant Journal, 2007, 51, 751-762.                                                                                                 | 2.8 | 30        |
| 72 | Recent surprises in protein targeting to mitochondria and plastids. Current Opinion in Plant Biology, 2006, 9, 610-615.                                                                                              | 3.5 | 145       |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis[W]. Plant Cell, 2004, 16, 2089-2103.                             | 3.1 | 1,132     |
| 74 | GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts. Nucleic Acids Research, 2004, 33, D641-D646.                               | 6.5 | 16        |
| 75 | Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications. Genome Research, 2004, 14, 2176-2189.                    | 2.4 | 282       |
| 76 | Predotar: A tool for rapidly screening proteomes forN-terminal targeting sequences. Proteomics, 2004, 4, 1581-1590.                                                                         | 1.3 | 817       |
| 77 | European consortia building integrated resources for Arabidopsis functional genomics. Current Opinion in Plant Biology, 2003, 6, 426-429.                                                   | 3.5 | 44        |
| 78 | Identification of the fertility restoration locus, Rfo , in radish, as a member of the pentatricopeptideâ€repeat protein family. EMBO Reports, 2003, 4, 588-594.                            | 2.0 | 291       |
| 79 | Duplication and Quadruplication of Arabidopsis thaliana Cysteinyl- and Asparaginyl-tRNA Synthetase<br>Genes of Organellar Origin. Journal of Molecular Evolution, 2000, 50, 413-423.        | 0.8 | 76        |
| 80 | Potential dual targeting of an Arabidopsisarchaebacterial-like histidyl-tRNA synthetase to mitochondria and chloroplasts 1. FEBS Letters, 1998, 431, 39-44.                                 | 1.3 | 73        |
| 81 | Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Molecular Genetics and Genomics, 1992, 235, 340-348. | 2.4 | 176       |