Ronald C Chatelier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11904488/ronald-c-chatelier-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 1,602 20 28 g-index

28 1,648 3 3.73 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
28	Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma-activated polymer surfaces. <i>Surface and Interface Analysis</i> , 2000 , 29, 46-55	1.5	100
27	Elimination of stick-slip of elastomeric sutures by radiofrequency glow discharge deposited coatings. <i>Journal of Biomedical Materials Research Part B</i> , 2000 , 53, 235-43		7
26	Hybrid biomaterials: Surface-MALDI mass spectrometry analysis of covalent binding versus physisorption of proteins. <i>Colloids and Surfaces B: Biointerfaces</i> , 2000 , 17, 23-35	6	28
25	Effect of polysaccharide structure on protein adsorption. <i>Colloids and Surfaces B: Biointerfaces</i> , 2000 , 17, 37-48	6	151
24	Method of immobilization of carboxymethyl-dextran affects resistance to tissue and cell colonization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2000 , 18, 221-234	6	58
23	Determination of the Intrinsic Acid B ase Dissociation Constant and Site Density of Ionizable Surface Groups by Capillary Rise Measurements. <i>Langmuir</i> , 1997 , 13, 3043-3046	4	11
22	A quantitative model for the surface restructuring of repeatedly plasma treated silicone rubber. <i>Plasmas and Polymers</i> , 1997 , 2, 41-51		7
21	Contributions of restructuring and oxidation to the aging of the surface of plasma polymers containing heteroatoms. <i>Plasmas and Polymers</i> , 1997 , 2, 91-114		40
20	Incorporation of Surface Topography in the XPS Analysis of Curved or Rough Samples Covered by Thin Multilayers. <i>Surface and Interface Analysis</i> , 1997 , 25, 741-746	1.5	32
19	Concurrent restructuring and oxidation of the surface of n-hexane plasma polymers during aging in air. <i>Plasmas and Polymers</i> , 1996 , 1, 207-228		20
18	Characterization of the Ageing of Plasma-deposited Polymer Films: Global Analysis of X-ray Photoelectron Spectroscopy Data. <i>Surface and Interface Analysis</i> , 1996 , 24, 271-281	1.5	160
17	Correlation of the Nitrogen 1s and Oxygen 1s XPS Binding Energies with Compositional Changes During Oxidation of Ethylene Diamine Plasma Polymers. <i>Surface and Interface Analysis</i> , 1996 , 24, 611-61	اؤ ٠5	92
16	Covalently Attached Thin Coatings Comprising Saccharide and Alkylene Oxide Segments 1996 , 147-156		8
15	Mechanism of the Initial Attachment of Human Vein Endothelial Cells onto Polystyrene-Based Culture Surfaces and Surfaces Prepared by Radiofrequency Plasmas. <i>ACS Symposium Series</i> , 1995 , 436-4	494	6
14	Effects of plasma modification conditions on surface restructuring. <i>Langmuir</i> , 1995 , 11, 2585-2591	4	44
13	Quantitative Analysis of Polymer Surface Restructuring. <i>Langmuir</i> , 1995 , 11, 2576-2584	4	97
12	Theory of Contact Angles and the Free Energy of Formation of Ionizable Surfaces: Application to Heptylamine Radio-Frequency Plasma-Deposited Films. <i>Langmuir</i> , 1995 , 11, 4122-4128	4	69

LIST OF PUBLICATIONS

11	of Biomaterials Science, Polymer Edition, 1995 , 7, 601-22	3.5	17
10	Growth of human cells on plasma polymers: putative role of amine and amide groups. <i>Journal of Biomaterials Science, Polymer Edition</i> , 1994 , 5, 531-54	3.5	170
9	A multi-technique study of the spontaneous oxidation of N-hexane plasma polymers. <i>Journal of Polymer Science Part A</i> , 1994 , 32, 1399-1414	2.5	107
8	Evolution of the surface composition and topography of perfluorinated polymers following ammonia-plasma treatment. <i>Journal of Adhesion Science and Technology</i> , 1994 , 8, 305-328	2	88
7	Degradation of medical-grade polyurethane elastomers: the effect of hydrogen peroxide in vitro. Journal of Biomedical Materials Research Part B, 1993 , 27, 345-56		49
6	Plasma surface modifications for improved biocompatibility of commercial polymers. <i>Polymer International</i> , 1992 , 27, 109-117	3.3	18
5	Polyurethane elastomers based on novel polyether macrodiols and MDI: Synthesis, mechanical properties, and resistance to hydrolysis and oxidation. <i>Journal of Applied Polymer Science</i> , 1992 , 46, 319	-328	44
4	Surface characterization of plasma polymers from amine, amide and alcohol monomers. <i>Journal of Applied Polymer Science</i> , 1990 , 46, 361-384	2.9	64
3	Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins. <i>Biopolymers</i> , 1987 , 26, 507-24	2.2	58
2	Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. II. Two protein components. <i>Biopolymers</i> , 1987 , 26, 1097-113	2.2	27
1	Indefinite isoenthalpic self-association of solute molecules. <i>Biophysical Chemistry</i> , 1987 , 28, 121-8	3.5	30